Skip to main content

Advertisement

Log in

How to select a patient for LVAD

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Left ventricular assist device (LVAD) implantation leads to improvement in symptoms and survival in patients with advanced heart failure. An important factor in improving outcomes post-LVAD implantation is optimal preoperative patient selection and optimization. In this review, we highlight the latest on the evaluation of patients with advanced heart failure for LVAD candidacy, including discussion of patient selection, implantation timing, laboratory and other testing considerations, and the importance of psychosocial evaluation. Such thorough evaluation by multidisciplinary team can serve to improve the outcomes of a complex group of patients with advanced heart failure being evaluated for LVAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg. 2021;111:778–92. https://doi.org/10.1016/j.athoracsur.2020.12.038.

    Article  PubMed  Google Scholar 

  2. Kwok CS, Abramov D, Parwani P, et al. Cost of inpatient heart failure care and 30-day readmissions in the United States. Int J Cardiol. 2021;329:115–22. https://doi.org/10.1016/j.ijcard.2020.12.020.

    Article  PubMed  Google Scholar 

  3. Pagani FD, Mehra MR, Cowger JA, et al. Clinical outcomes and healthcare expenditures in the real world with left ventricular assist devices – The CLEAR-LVAD Study. J Heart Lung Transplant. 2021;40:323–33. https://doi.org/10.1016/j.healun.2021.02.010.

    Article  PubMed  Google Scholar 

  4. Patel SR, Sileo A, Bello R, Gunda S, Nguyen J, Goldstein D. Heart transplantation versus continuous-flow left ventricular assist device: comprehensive cost at 1 Year. J Card Fail. 2015;21:160–6. https://doi.org/10.1016/j.cardfail.2014.11.007.

    Article  PubMed  Google Scholar 

  5. Sivathasan C, Lim CP, Kerk KL, Sim DKL, Mehra MR. Mechanical circulatory support and heart transplantation in the Asia Pacific region. J Heart Lung Transplant. 2017;36:13–8. https://doi.org/10.1016/j.healun.2016.09.006.

    Article  PubMed  Google Scholar 

  6. Williams ML, Trivedi JR, McCants KC, et al. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg. 2011;91:1330–3. https://doi.org/10.1016/j.athoracsur.2011.01.062.

    Article  PubMed  Google Scholar 

  7. Zimpfer D, Fiane AE, Larbalestier R, et al. Long-term survival of patients with advanced heart failure receiving an left ventricular assist device intended as a bridge to transplantation: The registry to evaluate the HeartWare left ventricular assist system. Circ Heart Fail. 2020;13:e006252. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006252.

    Article  PubMed  Google Scholar 

  8. Moss N, Rakita V, Lala A, et al. Hemodynamic response to exercise in patients supported by continuous flow left ventricular assist devices. JACC Heart Fail. 2020;8:291–301. https://doi.org/10.1016/j.jchf.2019.10.013.

    Article  PubMed  Google Scholar 

  9. Baumwol J. I need help’-A mnemonic to aid timely referral in advanced heart failure. J Heart Lung Transplant. 2017;36:593–4.

    Article  PubMed  Google Scholar 

  10. Alba AC, Agoritsas T, Jankowski M, et al. Risk prediction models for mortality in ambulatory patients with heart failure: A systematic review. Circ Heart Fail. 2013;6:881–9. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000043.

    Article  PubMed  Google Scholar 

  11. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79:e263–421. https://doi.org/10.1016/j.jacc.2021.12.012.

    Article  PubMed  Google Scholar 

  12. Crespo-Leiro MG, Metra M, Lund LH, et al. Advanced heart failure: A position statement of the heart failure association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:1505–35. https://doi.org/10.1002/ejhf.1236.

    Article  PubMed  Google Scholar 

  13. Guglin M, Zucker MJ, Borlaug BA, et al. Evaluation for heart transplantation and LVAD implantation: JACC Council Perspectives. J Am Coll Cardiol. 2020;75:1471–87. https://doi.org/10.1016/j.jacc.2020.01.034.

    Article  PubMed  Google Scholar 

  14. Patel JN, Chung JS, Seliem A, et al. Impact of heart transplant allocation change on competing waitlist outcomes among listing strategies. Clin Transplant. 2021. https://doi.org/10.1111/ctr.14345.

  15. Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) Randomized Clinical Trial. JAMA Cardiol. 2020;5:411–9. https://doi.org/10.1001/jamacardio.2019.5323.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kormos RL, Cowger J, Pagani FD, et al. The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving Indications, Outcomes, and Scientific Partnerships. Ann Thorac Surg. 2019;107:341–53. https://doi.org/10.1016/j.athoracsur.2018.11.011.

    Article  PubMed  Google Scholar 

  17. Kanwar MK, McIlvennan CK, Lohmueller LC, et al. Defining optimal outcomes in patients with left ventricular assist devices. ASAIO J. 2021. https://doi.org/10.1097/MAT.0000000000001228.

  18. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Eng J Med. 2001;345:1435–43. https://doi.org/10.1056/NEJMoa012175.

    Article  CAS  Google Scholar 

  19. Estep JD, Starling RC, Horstmanshof DA, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: Results From the ROADMAP Study. J Am Coll Cardiol. 2015;66:1747–61. https://doi.org/10.1016/j.jacc.2015.07.075.

    Article  PubMed  Google Scholar 

  20. Ton V-K, Xie R, Hernandez- Montfort JA, et al. Short- and long-term adverse events in patients on temporary circulatory support before durable ventricular assist device: An IMACS Registry Analysis. J Heart Lung Transplant. 2020;39:342–52. https://doi.org/10.1016/j.healun.2019.12.011.

    Article  PubMed  Google Scholar 

  21. Muslem R, Caliskan K, Leebeek FWG. Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost. 2018;16:429–40. https://doi.org/10.1111/jth.13933.

    Article  CAS  PubMed  Google Scholar 

  22. Fried J, Levin AP, Mody KM, et al. Prior hematologic conditions carry a high morbidity and mortality in patients supported with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2014;33:1119–25. https://doi.org/10.1016/j.healun.2014.07.002.

    Article  PubMed  Google Scholar 

  23. Dufendach KA, Seese L, Stearns B, et al. Outcomes of left ventricular assist device implantation in hypercoagulable patients. J Card Surg. 2020;35:2201–7. https://doi.org/10.1111/jocs.14710.

    Article  PubMed  Google Scholar 

  24. Kilic A, Chen CW, Gaffey AC, Wald JW, Acker MA, Atluri P. Preoperative renal dysfunction does not affect outcomes of left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2018;156:1093–1101.e1. https://doi.org/10.1016/j.jtcvs.2017.12.044.

    Article  PubMed  Google Scholar 

  25. Kirklin JK, Naftel DC, Kormos RL, et al. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant. 2013;32:1205–13. https://doi.org/10.1016/j.healun.2013.09.001.

    Article  PubMed  Google Scholar 

  26. Brisco MA, Kimmel SE, Coca SG, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7:68–75. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000507.

    Article  PubMed  Google Scholar 

  27. Yalcin YC, Bunge JJH, Guven G, et al. Acute kidney injury following left ventricular assist device implantation: contemporary insights and future perspectives. J Heart Lung Transplant. 2019;38:797–805. https://doi.org/10.1016/j.healun.2019.06.001.

    Article  PubMed  Google Scholar 

  28. Hasin T, Topilsky Y, Schirger JA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59:26–36. https://doi.org/10.1016/j.jacc.2011.09.038.

    Article  PubMed  Google Scholar 

  29. Bansal N, Hailpern SM, Katz R, et al. Outcomes associated with left ventricular assist devices among recipients with and without end-stage renal disease. JAMA Intern Med. 2018;178:204–9. https://doi.org/10.1001/jamainternmed.2017.4831.

    Article  PubMed  Google Scholar 

  30. Guglin M. What did we learn about VADs in 2021? The VAD J. 2022. https://doi.org/10.11589/vad/e2022811.

  31. Grant JK, Ebner B, Vincent L, et al. Assessing in-hospital cardiovascular, thrombotic and bleeding outcomes in patients with chronic liver disease undergoing left ventricular assist device implantation. Thromb Res. 2021;202:184–90. https://doi.org/10.1016/j.thromres.2021.04.010.

    Article  CAS  PubMed  Google Scholar 

  32. Matthews JC, Pagani FD, Haft JW, Koelling TM, Naftel DC, Aaronson KD. Model for end-stage liver disease score predicts left ventricular assist device operative transfusion requirements, morbidity, and mortality. Circulation. 2010;121:214–20. https://doi.org/10.1161/CIRCULATIONAHA.108.838656.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang JA, Kato TS, Shulman BP, et al. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: use of the Model of End-Stage Liver Disease (MELD) and MELD eXcluding INR (MELD-XI) scoring system. J Heart Lung Transplant. 2012;31:601–10. https://doi.org/10.1016/j.healun.2012.02.027.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peters AE, Smith LA, Ababio P, et al. Comparative analysis of established risk scores and novel hemodynamic metrics in predicting right ventricular failure in left ventricular assist device patients. J Card Fail. 2019;25:620–8. https://doi.org/10.1016/j.cardfail.2019.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Frankfurter C, Molinero M, Vishram-Nielsen JKK, et al. Predicting the risk of right ventricular failure in patients undergoing left ventricular assist device implantation: A systematic review. Circ Heart Fail. 2020;13:e006994. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006994.

    Article  PubMed  Google Scholar 

  36. Beller JP, Mehaffey JH, Wegermann ZK, et al. Strategies for mechanical right ventricular support during left ventricular assist device implant. Ann Thorac Surg. 2021. https://doi.org/10.1016/j.athoracsur.2021.10.032.

  37. Sreenivasan J, Kaul R, Khan MS, et al. Left ventricular assist device implantation in hypertrophic and restrictive cardiomyopathy: A systematic review. ASAIO J. 2021. https://doi.org/10.1097/MAT.0000000000001238.

  38. Truong VT, Shreenivas S, Mazur W, et al. Left ventricular end-diastolic dimension and clinical outcomes after centrifugal flow left ventricular assist device implantation. ASAIO J. 2022. https://doi.org/10.1097/MAT.0000000000001449.

  39. Daneshmand MA. The Enigma that is functional mitral valve regurgitation. ASAIO J. 2020;66:362. https://doi.org/10.1097/MAT.0000000000001162.

    Article  PubMed  Google Scholar 

  40. Osnat IBZ, Binyamin B-A, Yaron DB, et al. Natural history and prognosis of patients with unrepaired tricuspid regurgitation undergoing implantation of left ventricular assist device. ASAIO J. 2022;68:508–15. https://doi.org/10.1097/MAT.0000000000001521.

    Article  CAS  Google Scholar 

  41. Al Saadi T, Andrade A, Chickerillo K, et al. A case series of patients with left ventricular assist devices and concomitant mechanical heart valves. Artif Organs. 2020;44:1050–4. https://doi.org/10.1111/aor.13702.

    Article  PubMed  Google Scholar 

  42. Smood B, Han JJ, Helmers M, Atluri P. Mitral and aortic valve surgery during left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2022;164:970–7. https://doi.org/10.1016/j.jtcvs.2021.01.144.

    Article  PubMed  Google Scholar 

  43. Veenis JF, Radhoe SP, van Mieghem NM, et al. Remote hemodynamic guidance before and after left ventricular assist device implantation: short-term results from the HEMO-VAD Pilot Study. Future Cardiol. 2021;17:885–98. https://doi.org/10.2217/fca-2020-0182.

    Article  CAS  PubMed  Google Scholar 

  44. Gulati G, Ruthazer R, Denofrio D, Vest AR, Kent D, Kiernan MS. Understanding longitudinal changes in pulmonary vascular resistance after left ventricular assist device implantation. J Card Fail. 2021;27:552–9. https://doi.org/10.1016/j.cardfail.2021.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moss JD, Oesterle A, Raiman M, et al. Feasibility and utility of intraoperative epicardial scar characterization during left ventricular assist device implantation. J Cardiovasc Electrophysiol. 2019;30:183–92. https://doi.org/10.1111/jce.13803.

    Article  PubMed  Google Scholar 

  46. Hong Y, Seese L, Hickey G, Chen S, Mathier MA, Kilic A. Left ventricular assist device implantation in patients with a history of malignancy. J Card Surg. 2020;35:2224–31. https://doi.org/10.1111/jocs.14723.

    Article  PubMed  Google Scholar 

  47. Mohamedali B, Bhat G, Yost G, Tatooles A. Changes in spirometry after left ventricular assist device implantation. Artif Organs. 2015;39:1046–50. https://doi.org/10.1111/aor.12507.

    Article  CAS  PubMed  Google Scholar 

  48. Caraballo C, DeFilippis EM, Nakagawa S, et al. Clinical outcomes after left ventricular assist device implantation in older adults: An INTERMACS analysis. JACC Heart Fail. 2019;7:1069–78. https://doi.org/10.1016/j.jchf.2019.10.004.

    Article  PubMed  Google Scholar 

  49. Adamson RM, Stahovich M, Chillcott S, et al. Clinical strategies and outcomes in advanced heart failure patients older than 70 years of age receiving the HeartMate II left ventricular assist device. a community hospital experience. J Am Coll Cardiol. 2011;57:2487–95. https://doi.org/10.1016/j.jacc.2011.01.043.

    Article  PubMed  Google Scholar 

  50. Patel JN, Rabkin DG, Sperry BW, Bhardwaj A, Chung JS, Abramov D. The effect of recipient BMI on waitlist and post-transplant outcomes after the 2018 heart transplant allocation policy change. J Card Surg. 2022;37:1896–904. https://doi.org/10.1111/jocs.16432.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khan MS, Yuzefpolskaya M, Memon MM, et al. Outcomes associated with obesity in patients undergoing left ventricular assist device implantation: a systematic review and meta-analysis. ASAIO J. 2020;66:401–8. https://doi.org/10.1097/MAT.0000000000001019.

    Article  PubMed  Google Scholar 

  52. Jeng EI, Miller AH, Friedman J, et al. Ventricular assist device implantation and bariatric surgery: a route to transplantation in morbidly obese patients with end-stage heart failure. ASAIO J. 2021;67:163–8. https://doi.org/10.1097/MAT.0000000000001212.

    Article  PubMed  Google Scholar 

  53. Roehrich L, Sündermann SH, Just IA, et al. Comparison of feasibility and results of frailty assessment methods prior to left ventricular assist device implantation. ESC Heart Fail. 2022;9:1038–49. https://doi.org/10.1002/ehf2.13764.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cagliostro M, Bromley A, Ting P, et al. Standardized use of the Stanford Integrated Psychosocial Assessment for transplantation in LVAD patients. J Card Fail. 2019;25:735–43. https://doi.org/10.1016/j.cardfail.2019.06.006.

    Article  PubMed  Google Scholar 

  55. Bruce CR, Minard CG, Wilhelms LA, et al. Caregivers of patients with left ventricular assist devices: possible impacts on patients’ mortality and interagency registry for mechanically assisted circulatory support-defined morbidity events. Circ Cardiovasc Qual Outcomes. 2017;10:e002879. https://doi.org/10.1161/CIRCOUTCOMES.116.002879.

    Article  PubMed  Google Scholar 

  56. DeFilippis EM, Breathett K, Donald EM, et al. Psychosocial risk and its association with outcomes in continuous-flow left ventricular assist device patients. Circ Heart Fail. 2020;13:e006910. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006910.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Allen LA, McIlvennan CK, Thompson JS, et al. Effectiveness of an intervention supporting shared decision making for destination therapy left ventricular assist device: The DECIDE-LVAD Randomized Clinical Trial. JAMA Intern Med. 2018;178:520–9. https://doi.org/10.1001/jamainternmed.2017.8713.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bruce CR, Blumenthal-Barby JS, Meyers D. Benefits and challenges of early Introduction of left ventricular assist device placement: A patient-centered perspective. J Am Coll Cardiol. 2015;66:1762–5. https://doi.org/10.1016/j.jacc.2015.08.852.

    Article  PubMed  Google Scholar 

  59. Baumwol J. I Need Help - a mnemonic to aid timely referral in advanced heart failure. J Heart Lung Transplant. 2017. https://doi.org/10.1016/j.healun.2017.02.010.

    Article  PubMed  Google Scholar 

  60. Warner SL, Pagani FD, Young JB, Stevenson LW, et al. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant. 2009. https://doi.org/10.1016/j.healun.2009.02.015.

    Article  Google Scholar 

  61. Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997. https://doi.org/10.1161/01.cir.95.12.2660

  62. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure model prediction of survival in heart failure. Circulation. 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.584102.

  63. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J Am Coll Cardiol. 2022. https://doi.org/10.1016/j.jacc.2021.12.012.

  64. Crespo-Leiro MG, Metra M, Lund LH, et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018. https://doi.org/10.1002/ejhf.1236.

  65. Lietz K, Long JW, Kfoury AG, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007. https://doi.org/10.1161/CIRCULATIONAHA.107.691972.

  66. Cowger J, Sundareswaran K, Rogers JG, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013. https://doi.org/10.1016/j.jacc.2012.09.055.

  67. Nayak A, Hu Y, Ko Y-A, et al. Creation and validation of a novel sex-specific mortality risk score in LVAD recipients. J Am Heart Assoc. 2021. https://doi.org/10.1161/JAHA.120.020019.

  68. Birati EY, Hanff TC, Maldonado D, et al. Predicting long term outcome in patients treated with continuous flow left ventricular assist device: the Penn—Columbia Risk Score. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.117.006408.

  69. Kanwar MK, Lohmueller LC, Kormos RL, et al. A Bayesian model to predict survival after left ventricular assist device implantation. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jchf.2018.03.016.

Download references

Funding

The authors did not receive any support (i.e. funds, grants) from organizations for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathia Cordero-Cabán.

Ethics declarations

Informed consent

This review manuscript meets ethical standards and did not require IRB approval or patient informed consent as no new patient data is provided.

Conflict of interest

The authors have no relevant financial, non-financial, or competing interests to disclose that are relevant to the content of this review article.

Human and animal rights

No animal or human subjects were used to write this review article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero-Cabán, K., Ssembajjwe, B., Patel, J. et al. How to select a patient for LVAD. Indian J Thorac Cardiovasc Surg 39 (Suppl 1), 8–17 (2023). https://doi.org/10.1007/s12055-022-01428-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-022-01428-w

Keywords

Navigation