Skip to main content
Log in

Uranium(IV) incorporation into inverse spinel magnetite (\(\hbox {FeFe}_{2}\hbox {O}_{4}\)): A charge-balanced substitution case analysis

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Magnetite has gained significant attention owing to its good radionuclide solid solution and recovery capacity. In this paper, first-principle calculations are adopted to evaluate and analyse the formation energies, mechanical stabilities, bonding behaviours and magnetic properties of U(IV) ions incorporated into the magnetite lattice with different charge-balanced cases. The case indicated by \(B_{1}\), adding a U(IV) ion in an octahedron site and generating an octahedron Fe(III) ion vacancy, is most favourable for U(IV) incorporation into the magnetite lattice. Moreover, the corresponding models (named \(B_{1}\), \(C_{1}\) and D) for different amounts of U(IV) incorporation satisfy mechanical stability. The bond population and Mulliken charge population calculations show that the ionic bonding strength of Fe–O and \(\hbox {U}^{\mathrm{IV}}\)–O bonds is stronger in pure magnetite compared to the mentioned U(IV)-doped magnetite models. The spin-polarised density of states of U(IV)-doped magnetites are asymmetrical for the spin-up part and the spin-down part, indicating that the mentioned U(IV)-doped magnetites have good magnetic properties. Our work is expected to provide new ideas for the disposal of U(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W Um, H S Chang, J P Icenhower, W W Lukens, R J Serne, N P Qafoku, J H Westsik, E C Buck and S C Smith, Environ. Sci. Technol. 45, 4904 (2011)

    Article  ADS  Google Scholar 

  2. W Um, H S Chang, J P Icenhower, W W Lukens, R J Serne, N P Qafoku, R K Kukkadapu and J H Westsik, J. Nucl. Mater. 429, 201 (2012)

    Article  ADS  Google Scholar 

  3. J M McBeth, J R Lloyd, G T W Law, F R Livens, I T Burke and K Morris, Mineral Mag. 75, 2419 (2011)

    Article  Google Scholar 

  4. S A Luksic, B J Riley, M Schweiger and P Hrma, J. Nucl. Mater. 466, 526 (2015)

    Article  ADS  Google Scholar 

  5. P Hrma, J V Crum, P R Bredt, L R Greenwood, B W Arey and H D Smith, J. Nucl. Mater. 345, 31 (2005)

    Article  ADS  Google Scholar 

  6. A A Akatov, B S Nikonov, B I Omel’Yanenko, S V Stefanovsky and J C Marra, Glass Phys. Chem. 35, 245 (2009)

    Article  Google Scholar 

  7. A A Akatov, B S Nikonov, B I Omel’Yanenko, O I Stefanovskaya, S V Stefanovsky, D Y Suntsov and J C Marra, Glass Phys. Chem. 36, 45 (2010)

    Article  Google Scholar 

  8. I V Pylypchuk, D Kołodyńska, M Kozioł and P P Gorbyk, Nanoscale Res. Lett. 11, 168 (2016)

    Article  ADS  Google Scholar 

  9. I Munier, J L Crovisier, B Grambow, B Fritz and A Clément, J. Nucl. Mater. 324, 97 (2004)

    Article  ADS  Google Scholar 

  10. P Frugier, T Chave, S Gin and J E Lartigue, J. Nucl. Mater. 392, 552 (2009)

    Article  ADS  Google Scholar 

  11. G Yang, S Cook, R J Hand and G Möbus, J. Eur. Ceram. Soc. 30, 831 (2010)

    Article  Google Scholar 

  12. W Huan, C Cheng, Y Yang, H Yuan and Y Li, J. Nanosci. Nanotechnol. 12, 4621 (2012)

    Article  Google Scholar 

  13. Z Qi, T P Joshi, R Liu, H Liu and J Qu, J. Hazard. Mater. 329, 193 (2017)

    Article  Google Scholar 

  14. A G Kumbhar, K Kishore, G Venkateswaran and V Balaji, Hydrometallurgy 68, 171 (2003)

    Article  Google Scholar 

  15. T A Marshall, K Morris, G T W Law, J F Mosselmans, P Bots, S A Parry and S Shaw, Environ. Sci. Technol. 48, 11853 (2014)

    Article  ADS  Google Scholar 

  16. F N Smith, W Um, C D Taylor, D S Kim, M J Schweiger and A A Kruger, Environ. Sci. Technol. 50, 5216 (2016)

    Article  ADS  Google Scholar 

  17. F N Smith, C D Taylor, W Um and A A Kruger, Environ. Sci. Technol. 49, 13699 (2015)

    Article  ADS  Google Scholar 

  18. F N Skomurski, K M Rosso, K M Krupka and B P McGrail, Environ. Sci. Technol. 44, 5855 (2010)

    Article  ADS  Google Scholar 

  19. S Kerisit, A R Felmy and E S Ilton, Environ. Sci. Technol. 45, 2770 (2011)

    Article  ADS  Google Scholar 

  20. M Suewattana and D J Singh, Phys. Rev. B 82, 014114 (2010)

    Article  ADS  Google Scholar 

  21. B Tu, H Wang, X Liu, W Wang and Z Fu, J. Am. Ceram. Soc. 96, 1937 (2013)

    Article  Google Scholar 

  22. B Tu, H Wang, X Liu, S A Khan, W Wang and Z Fu, J. Appl. Phys. 115, 223511 (2014)

    Article  ADS  Google Scholar 

  23. K Glazyrin, C McCammon, L Dubrovinsky, M Merlini, K Schollenbruch, A Woodland and M Hanfland, Am. Mineral. 97, 128 (2012)

    Article  ADS  Google Scholar 

  24. M C Payne, M P Teter, D C Allan, T A Arias and J D Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  25. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. S L Dudarev, G A Botton, S Y Savrasov, C J Humphreys and A P Sutton, Phys. Rev. B 57, 150 (1998)

    Article  ADS  Google Scholar 

  27. Z Zhang and S Satpathy, Phys. Rev. B 44, 13319 (1991)

    Article  ADS  Google Scholar 

  28. S L Dudarev, D N Manh and A P Sutton, Philos. Mag. 75, 613 (1997)

    Article  ADS  Google Scholar 

  29. V David, Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  30. G Kresse and J Hafner, J. Phys.: Condens. Matter 6, 8245 (1994)

    ADS  Google Scholar 

  31. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y Z Liu, Y H Jiang, J D Xing, R Zhou and J Feng, J. Alloys Compd. 648, 874 (2015)

    Article  Google Scholar 

  33. F Mouhat and F X Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  34. Y Liu, J Xing, Y Li, J Tan, S Liang and J Yan, J. Mater. Res. 31, 3805 (2016)

    Article  ADS  Google Scholar 

  35. A Roldan, D Santoscarballal and N H D Leeuw, J. Chem. Phys. 138, 204712 (2013)

    Article  ADS  Google Scholar 

  36. A M Hofmeister, B Wopenka and A J Locock, Geochim. Cosmochim. Acta 68, 4485 (2004)

    Article  ADS  Google Scholar 

  37. E Madelung and R Fuchs, Ann. Phys. (Berlin) 370, 289 (1921)

    Article  ADS  Google Scholar 

  38. H J Reichmann and S D Jacobsen, Am. Mineral. 89, 1061 (2004)

    Article  ADS  Google Scholar 

  39. C Gerard and L Pizzagalli, Pramana – J. Phys. 84, 1041 (2015)

    Google Scholar 

  40. S F Pugh, Philos. Mag. 45, 823 (2009)

    Article  Google Scholar 

  41. C Y Li, Y Huang and X M Zheng, Pramana – J. Phys. 87: 22 (2016)

    Google Scholar 

  42. G Stefanou, D Sakellari, K Simeonidis and T Kalabaliki, IEEE Trans. Magn. 50, 1 (2014)

    Article  Google Scholar 

  43. R D Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  44. M D Segall, R Shah, C J Pickard and M C Payne, Phys. Rev. B 54, 16317 (1996)

    Article  ADS  Google Scholar 

  45. M Sun and Y Peng, Appl. Surf. Sci. 307, 158 (2014)

    Article  Google Scholar 

  46. J Noh, O I Osman, S G Aziz, P Winget and J L Brédas, Sci. Technol. Adv. Mater. 15, 044202 (2014)

    Article  Google Scholar 

  47. S Jain, A O Adeyeye and D Y Dai, J. Appl. Phys. 95, 7237 (2004)

    Article  ADS  Google Scholar 

  48. X D Wen, R L Martin, L E Roy, G E Scuseria, S P Rudin, E R Batista, T M McCleskey, B L Scott, E Bauer, J J Joyce and T Durakiewicz, J. Chem. Phys. 137, 154707 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11702270), National Training Program of Innovation and Entrepreneurship for Undergraduates (201710619041), Scientific Research Fund of SiChuan Provincial Education Department (16Za0129), Longshan Academic Talent Research Support Program of the Southwest University of Science and Technology (17LZX608) and the Innovation Fund of Southwest University of Science and Technology (jz18-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, Q., Shih, K. et al. Uranium(IV) incorporation into inverse spinel magnetite (\(\hbox {FeFe}_{2}\hbox {O}_{4}\)): A charge-balanced substitution case analysis. Pramana - J Phys 93, 36 (2019). https://doi.org/10.1007/s12043-019-1795-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1795-2

Keywords

PACS Nos

Navigation