Skip to main content
Log in

Comprehensive Transcriptome Analysis of Arabidopsis thaliana DNA Polymerase Epsilon Catalytic Subunit A and B Mutants

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

In Arabidopsis, the catalytic subunit of DNA polymerase ε (POLE) is encoded by two genes: DNA polymerase epsilon catalytic subunit A (AtPOL2A) and B (AtPOL2B). Although studies have shown AtPOL2A to be involved in various biological processes, the role of AtPOL2B remains to be determined. In the present study, leaf cDNA libraries of one AtPOL2A mutant (atpol2a-1) and three AtPOL2B mutants (atpol2b-1, -2 and − 3) were sequenced using the Illumina platform. Analysis of gene expression profiles identified a total of 198, 76, 141 and 67 differentially expressed genes (DEGs) in atpol2a-1, atpol2b-1, atpol2b-2 and atpol2b-3, respectively. It was noted that the majority of pericentromeric transposable elements were transcriptionally active in atpol2a-1 as compared to atpol2b mutants and wild-type plants. Computational analysis of the proteins encoded by the DEGs identified CER1, Replication Protein A 1E (RPA1E) and AT5G60250 as potential interactors of AtPOL2A, and Pathogenesis-related gene 1 (PR1) and AT5G48490 as potential interactors of AtPOL2B. Interestingly, all these proteins showed a significant interaction with the POLE catalytic subunit of Saccharomyces cerevisiae. Furthermore, the in silico promoter analysis showed that the AtPOL2A promoter sequence is overrepresented with cis-acting regulatory elements associated with cell cycle regulation, meristematic/reproductive tissue-specific pattern of expression and MYB protein recognition, whereas the AtPOL2B promoter sequence was mainly enriched with stress-responsive elements; defense-responsive elements were only detected in the AtPOL2B promoter. Our data support the idea that AtPOL2B may coexpress with stress-responsive genes. The findings of the present study begin to unravel the potential molecular interactors of AtPOL2 genes at the molecular level and suggest new avenues for future studies.

Key Message

Transcriptome analysis of Arabidopsis DNA polymerase epsilon catalytic subunit A and B mutants provided novel insights into molecular interactors of AtPOL2s. Furthermore, the combined analysis of protein-protein interactions and promoter sequences revealed that the duplicated copy of AtPOL2A may play a role in mediating stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the European Bioinformatics Institute ArrayExpress repository, E-MTAB-2465 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-2465?query=E-MTAB-2465%20), and all data generated during the study are included in this published article and its supplementary information files.

Abbreviations

ABA:

Abscisic acid

ABO4:

ABSCISIC ACID OVERSENSITIVE 4

AGL:

AGAMOUS-LIKE

ATHB2:

Arabidopsis HOMEOBOX 2

AtPOL2A:

DNA polymerase epsilon catalytic subunit A

AtPOL2B:

DNA polymerase epsilon catalytic subunit B

ChiC:

Class V chitinase

CREs:

cis-acting regulatory elements

DEGs:

Differentially expressed genes

DNA Pols:

DNA polymerases

ESD7:

EARLY IN SHORT DAYS 7

FC:

Fold change

GLL23:

GDSL-like lipase 23

GMI1:

GAMMA-IRRADIATION AND MITOMYCIN C INDUCED 1

GO:

Gene Ontology

GOMo:

Gene Ontology for Motifs

HBP1:

HISTONE GENE-BINDING PROTEIN 1

HD-Zip:

Homeodomain-leucine zipper

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KTI1:

KUNITZ TRYPSIN INHIBITOR 1

MAF:

MADS AFFECTING FLOWERING

MEME:

Multiple Em for Motif Elicitation

NIT2:

NITRILASE 2

PARP:

POLY (ADP-RIBOSE) POLYMERASE

OSM34:

Osmotin 34

PDF1.3:

Plant defensin 1.3

POLE:

DNA polymerase ε

PR1:

Pathogenesis-related gene 1

RPA1E:

Replication Protein A 1E

SMR7:

SIAMESE-RELATED 7

T-DNA:

Transfer DNA

TEs:

Transposable elements

TFs:

Transcription factors

TIL:

TILTED

WT:

Wild-type

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaiz A, Talavera-Mateo L, Gonzalez-Melendi P, Martinez M, Diaz I, Santamaria ME (2018) Arabidopsis kunitz trypsin inhibitors in defense against spider mites. Front Plant Sci 9:986

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, Manzoor A et al (2020) Osmotin: a cationic protein leads to improve biotic and abiotic stress tolerance in plants. Plants 9:992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Biedrzycki ML, Venkatachalam L, Bais HP (2011) Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition. Plant Signal Behav 6:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourguet P, Lopez-Gonzalez L, Gomez-Zambrano A, Pelissier T, Hesketh A, Potok ME et al (2020) DNA polymerase epsilon is required for heterochromatin maintenance in Arabidopsis. Genome Biol 21:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20:2586–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capelli N, Diogon T, Greppin H, Simon P (1997) Isolation and characterization of a cDNA clone encoding an osmotin-like protein from Arabidopsis thaliana. Gene 191:51–56

    Article  CAS  PubMed  Google Scholar 

  • Carabelli M, Sessa G, Baima S, Morelli G, Ruberti I (1993) The Arabidopsis Athb-2 and – 4 genes are strongly induced by far-red-rich light. Plant J 4:469–479

    Article  CAS  PubMed  Google Scholar 

  • Carabelli M, Turchi L, Ruzza V, Morelli G, Ruberti I (2013) Homeodomain-leucine zipper II family of transcription factors to the limelight: central regulators of plant development. Plant Signal Behav 8:e25447

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaubet N, Flenet M, Clement B, Brignon P, Gigot C (1996) Identification of cis-elements regulating the expression of an Arabidopsis histone H4 gene. Plant J 10:425–435

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Tonelli C (2009) A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res 19:1231–1232

    Article  PubMed  Google Scholar 

  • de Jager SM, Menges M, Bauer UM, Murra JA (2001) Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol Biol 47:555–568

    Article  PubMed  Google Scholar 

  • del Olmo I, Lopez-Gonzalez L, Martin-Trillo MM, Martinez-Zapater JM, Pineiro M, Jarillo JA (2010) EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. Plant J 61:623–36

  • Engel ML, Holmes-Davis R, McCormick S (2005) Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol 138:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentric N, Masoud K, Journot RP, Cognat V, Chaboute ME, Noir S et al (2020) The F-box-like protein FBL17 is a regulator of DNA-damage response and colocalizes with RETINOBLASTOMA RELATED1 at DNA lesion sites. Plant Physiol 183:1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669

    Article  CAS  PubMed  Google Scholar 

  • Han YF, Huang HW, Li L, Cai T, Chen S, He XJ (2015) The cytosolic iron-sulfur cluster assembly protein MMS19 regulates transcriptional gene silencing, DNA repair, and flowering time in Arabidopsis. PLoS ONE 10:e0129137

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y et al (2015) Arabidopsis thaliana defense response to the ochratoxin A-producing strain (aspergillus ochraceus 3.4412). Plant Cell Rep 34:705–719

    Article  CAS  PubMed  Google Scholar 

  • Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P et al (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenik PD, Jurkuta RE, Barton MK (2005) Interactions between the cell cycle and embryonic patterning in Arabidopsis uncovered by a mutation in DNA polymerase epsilon. Plant Cell 17:3362–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (2002) E2F sites that can interact with E2F proteins cloned from rice are required for meristematic tissue-specific expression of rice and tobacco proliferating cell nuclear antigen promoters. Plant J 29:45–59

    Article  CAS  PubMed  Google Scholar 

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai CP, Huang LM, Chen LO, Chan MT, Shaw JF (2017) Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Mol Biol 95:181–197

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci 104:672–677

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2008) Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol Plant 1:482–495

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Tabata T, Kawata T, Nakayama T, Iwabuchi M (1987) Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Lett 223:273–278

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Nakayama T, Takefumi, Kawata, Tabata T, Iwabuchi M (1989) Specific interaction of nuclear protein HBP-1 with the conserved hexameric sequence ACGTCA in the regulatory region of wheat histone genes. Plant Cell Physiol 30:107–119

    Article  CAS  Google Scholar 

  • Mikami K, Sakamoto A, Takase H, Tabata T, Iwabuchi M (1989) Wheat nuclear protein HBP-1 binds to the hexameric sequence in the promoter of various plant genes. Nucleic Acids Res 17:9707–9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Takeyasu K, Sato MH (2001) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46:185–192

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Hisabori T, Takeyasu K, Sato MH (2004) VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana. Plant Cell Physiol 45:845–854

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH et al (2011) A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234:123–137

    Article  CAS  PubMed  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A et al (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecenkova T, Pleskot R, Zarsky V (2017) Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein. Int J Mol Sci 18(4):825

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedroza-Garcia JA, Mazubert C, Del Olmo I, Bourge M, Domenichini S, Bounon R et al (2017) Function of the plant DNA polymerase epsilon in replicative stress sensing, a genetic analysis. Plant Physiol 173:1735–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedroza-Garcia JA, De Veylder L, Raynaud C (2019) Plant DNA polymerases. Int J Mol Sci 20:4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit JM, Briat JF, Lobréaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem 359:575–582

    Article  CAS  Google Scholar 

  • Planchais S, Perennes C, Glab N, Mironov V, Inze D, Bergounioux C (2002) Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins. Plant Mol Biol 50:111–127

    Article  CAS  PubMed  Google Scholar 

  • Roa H, Lang J, Culligan KM, Keller M, Holec S, Cognat V et al (2009) Ribonucleotide reductase regulation in response to genotoxic stress in Arabidopsis. Plant Physiol 151:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C et al (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Ronceret A, Guilleminot J, Lincker F, Gadea-Vacas J, Delorme V, Bechtold N et al (2005) Genetic analysis of two Arabidopsis DNA polymerase epsilon subunits during early embryogenesis. Plant J 44:223–236

    Article  CAS  PubMed  Google Scholar 

  • Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of myb-like proteins. Plant J 20:641–652

    Article  CAS  PubMed  Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154–28159

    Article  CAS  PubMed  Google Scholar 

  • Tabata T (1991) Leucine-zipper type transcription factors of wheat. Bot Mag Tokyo 104:171–181

    Article  Google Scholar 

  • Terada R, Nakayama T, Iwabuchi M, Shimamoto K (1995) A type I element composed of the hexamer (ACGTCA) and octamer (CGCGGATC) motifs plays a role(s) in meristematic expression of a wheat histone H3 gene in transgenic rice plants. Plant Mol Biol 27:17–26

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Woude L, Piotrowski M, Klaasse G, Paulus JK, Krahn D, Ninck S et al (2021) The chemical compound “Heatin” stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases. Plant J 106(6):1523–1540

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W et al (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Z (2006) Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D et al (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Cell Physiol 137:176–189

    Article  CAS  Google Scholar 

  • Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A et al (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem 277:11582–11590

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Zhang X, Liu J, Wang Y, He J, Yang T et al (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. Plant Cell 21:386–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M.W. conceived and designed the study, performed mutant screening and expression studies, analyzed and interpreted transcriptome data, and drafted the manuscript. T.M.H. analyzed and interpreted transcriptome data and helped to draft the manuscript. K. K. D. conducted the protein-protein docking study and helped to draft the manuscript. I. U. carried out RT-qPCR analysis. J.M.D. conceived and designed the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anushka M. Wickramasuriya.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by: Ray Ming

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 62.5 KB)

ESM 2

(PDF 461 KB)

ESM 3

(PDF 360 KB)

ESM 4

(PDF 47.1 KB)

ESM 5

(XLSX 25.0 KB)

ESM 6

(PDF 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wickramasuriya, A.M., Hewavithana, T.M., de Silva, K.K. et al. Comprehensive Transcriptome Analysis of Arabidopsis thaliana DNA Polymerase Epsilon Catalytic Subunit A and B Mutants. Tropical Plant Biol. 16, 12–31 (2023). https://doi.org/10.1007/s12042-023-09327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-023-09327-z

Keywords

Navigation