Skip to main content

Advertisement

Log in

Centuries-Old Viable Fruit of Sacred Lotus Nelumbo nucifera Gaertn var. China Antique

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

During the Sino-Japanese conflict of the 1920s, Japanese botanist Ichiro Ohga was presented single-seeded fruit of Nelumbo nucifera var. China Antique collected by a local farmer from a dry lakebed in Northeast China (then, “Manchuria”). Ohga studied the fruit and published his findings. Years later, we tested the germination of Nelumbo fruit from the same locality. The oldest seed sprouted, having a germination time of ~3 days, was radiocarbon dated to be ~1300 years old. These cold- and drought-tolerant seeds exhibited shoot-before-root emergence and a primary green plumule capable of “dim-light” photosynthesis. Such traits and the notable long-term viability of the fruit spurred the interest of Ray Ming, University of Illinois that has now led to the sequencing of the Nelumbo genome. Analyses of this genome may provide insight into the biochemistry of Nelumbo on wax-biosynthesis genes, and application of aging-related thermostable proteins to the extension of seed-life and improvement of food quality of economic crops. Here, we review the history of these long-lived Nelumbo fruit, and their occurrence, discovery, collection, propagation, and methods of seedling care. The robust impermeable wax- and suberin-covered pericarp is a major factor contributing to their remarkable longevity. New findings are presented on the modern and 459- and 464-year-old pericarp anatomy, impermeability to water, and whole fruit and pericarp mechanical properties, and comparison of the mode of fruit weight-gain during imbibition and germination time relative to fruit maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AMS:

Accelerator mass-spectrometry

BP:

Before Present

IAA:

Indole-3-acetic acid, auxin

WWII:

World War Two

Gb:

Gigabase

GPa:

GigaPascal

kgf:

kilogram force

mN:

milli-Newton

References

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  • Anon (1962) Mysterious seeds. People’s Pictorial vol. 8 (in Chinese)

  • Aung LH, Harris CM, Rij RE, Brown JW (1996) Postharvest storage temperature and film wrap effects on quality of chayote, Sechium edule Sw. J Hortic Sci 71:297–404

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Bewley JD, Black M (1994) Seeds - Physiology of Development and Germination. Plenum, New York

    Google Scholar 

  • Casadoro G, Colombo PM, Rascio N (1980) Plastids in quiescent embryo and young seedlings of the chloroembryophte Citrus nobolis x Citrus aurantium amara pumila. Ann Bot 45:415–418

    Google Scholar 

  • Chang YJ (1978) Thousand-year-old lotus has awakened. Fossil 1:22–23 (in Chinese)

    Google Scholar 

  • Chen CH, Chen SM, Zhou KS (1965) Palynological analysis of the Holocene Nymphaea seed-bearing deposits at the vicinity in Liaoning Peninsula. Quaternaria Sin 4:167–173 (in Chinese, English title)

    Google Scholar 

  • Dakshini KMM, Tandon RK (1970) An unusual type of germination in a graminaceous seed. Ann Bot 34:423–425

    Google Scholar 

  • Dannenhoffer JM, Shen-Miller J (1993) Evaluation of fixative composition, fixative storage, and fixative duration on the fine structure and volume of root-cell nucleoli. Biol Cell 79:71–79

    Article  Google Scholar 

  • Davies PJ (ed) (2004) Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd edn. Kluwer, The Netherlands

    Google Scholar 

  • Duke AJ (2002) Handbook of Medicinal Herbs, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Esau K, Kosakai H (1975) Laticifers in Nelumbo nucifera Gaertn.: distribution and structure. Ann Bot 39:713–719

    Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceou-Tertiary extinction event. PNAS (USA) 106(14):5717–5742

    Article  Google Scholar 

  • Grady DL, Thanos PK, Corrada MM et al (2013) DRD4 genotype predicts longevity in mice and human. J Neurosci 33(1):286–291

    Article  PubMed  CAS  Google Scholar 

  • Grant NM, Miller RE, Watling JR, Robinson SA (2008) Synchronicity of thermogenic activity, alternate pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus floroal development. J Exp Bot 59:705–714

    Article  PubMed  CAS  Google Scholar 

  • Huang GH (1987) Physiology and morphology of Nelumbo nucifera. In, China Lotus, Chp 4, p. 38–45, Chinese Academy Wuhan Inst Bot, Ed, Beijing Sci Publ (in Chinese)

  • Hysitron Inc. (1997) Nanoindentation, a practical approach. Minneapolis, MN

  • Janzen DH (1982) Ecological distribution of chlorophyllous developing embryos among perennial plants in a tropical deciduous forest. Biotropica 24(3):232–236

    Article  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kordan HA (1977) Coleoptile emergence in rice seedlings in different oxygen environments. Ann Bot 41:1205–1209

    Google Scholar 

  • Libby WF (1955) Radiocarbon Dating, 2nd edn. Univ Chicago Press, Chicago

    Google Scholar 

  • Ling ZQ, Xie BJ, Yang EL (2005) Isolation, characterization, and determination of antioxidative activities of oligomeric procyanidins from the seedpot of Nelumbo nucifera Gaertn. J Agric Food Chem 53:2442–2445

    Article  Google Scholar 

  • Lowell BB, Spiegelman BM (2000) Toward a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    PubMed  CAS  Google Scholar 

  • Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41

    Article  PubMed  Google Scholar 

  • Moubayidin M, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14(10):557–562

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1098

    Article  PubMed  Google Scholar 

  • Naqvi S, Gordon SA (1966) Auxin transport in Zea Mays L. coleoptiles. I. Influence of gravity on transport of indoleacetic acid-2-14C. Plant Physiol 41:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Schuler MA (2013) Cytochrome P450 genes from the sacred lotus genome. Trop Plant Sci. doi:10.1007/s12042-013-9119-z

    Google Scholar 

  • Ni XM (1987) Lotus cultivars. In: China Lotus. Chp. 6, pp. 62-69, Wuhan Inst Bot Ed, Sci Publ Beijing (in Chinese)

  • Ohga I (1923) On the longevity of seed of Nelumbo nucifera. Bot Mag 37:87–95

    Google Scholar 

  • Ohga I (1926) On the structure of some ancient, but still viable fruits of Indian lotus, with special reference to their prolonged dormancy. Japan J Bot 33:1–20

    Google Scholar 

  • Ohga I (1927) On the age of ancient fruit of the Indian lotus which is kept in the peat bed in south Manchuria. Bot Mag 14:1–6

    Google Scholar 

  • Priestley DA (1986) Seed Aging, Implication for Seed Storage and Persistence in the Soil. Comstock, Ithaca

    Google Scholar 

  • Priestley DA, Posthumus MA (1982) Extreme longevity of lotus seeds from Pulantien. Nature 299:149–149

    Article  Google Scholar 

  • Raghavan V (2002) Induction of vivipary in Arabidopsis by silique culture: implication for seed dormancy and germination. Am J Bot 89:766–776

    Article  PubMed  Google Scholar 

  • Rajjou L, Duvel M, Gallardo K et al (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AG, Fernie AR, van Dongen JT (2009) Alternate oxidase: a defence against metabolic fluctuation? Physiol Plant 137:371–382

    Article  PubMed  CAS  Google Scholar 

  • Ruska SA et al (2004) The capacity of green oil seeds to utilize photosynthesis to drive biosynthesis. Plant Physiol 136:2700–2709

    Article  Google Scholar 

  • Shaw MF (1929) A microchemical study of the fruit coat of Nelumbo lutea. Am J Bot 16:259–276

    Article  CAS  Google Scholar 

  • Shen-Miller J (2002) Sacred lotus, the long-living fruits of China Antique. Seed Sci Res 12:131–143

    Article  CAS  Google Scholar 

  • Shen-Miller J, Lindner P, Xie J, et al. (2013) Thermal-Stable Proteins of Fruit of Long-Living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Tropical Plant Biol. Special Lotus Issue. doi:10.1007/s12042-013-9124-2

  • Shen-Miller J, Mudgett MB, Schopf JW et al (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Shen-Miller J, Schopf JW, Harbottle G et al (2002) Long-living lotus: germination and soil γ-irradiation of centuries-old fruits, and cultivation, growth and phenotypic abnormalities of offspring. Am J Bot 89:236–247

    Article  PubMed  CAS  Google Scholar 

  • Stuiver M, Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35:35–65

    Google Scholar 

  • Tele Images-Nature (2003) Des Graines D’Eternite/TheEternal Seeds, episode #5, Power Plants. Tele Images-Nature, Paris

  • Tennyson A (1959) Poetic Works, Including Plays. Oxford Univ Press, London

    Google Scholar 

  • Thomas H, Smart CM (1993) Crops that stay green. Ann Appl Biol 123:193–219

    Article  Google Scholar 

  • Ushimaru T, Kanematsu S, Katayama M, Tsuji H (2001) Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol Plant 112:39–46

    Article  PubMed  CAS  Google Scholar 

  • Ushimaru T, Hasegawa T, Amano T et al (2003) Chloroplasts in seeds and dark-grown seedlings of lotus. J Plant Physiol 160:321–324

    Article  PubMed  CAS  Google Scholar 

  • Van Bergen PF, Hatcher PG, Boon JJ et al (1997) Macromolecular composition of the propagule wall of Nelumbo nucifera. Phytochem 45:601–610

    Article  Google Scholar 

  • Webster, Ninth New-Collegiate Dictionary (1985) Lotus. p. 706 Merriam-Webster Inc. Springfield, MA

  • Wester HV (1973) Further evidences on age of ancient viable lotus seeds from Pulantien deposit, Manchuria. Hortscience 8:371–377

    Google Scholar 

  • Wijte AHBM, Gallagher JL (1996) Effect of oxygen availability and salinity on early life history of salt marsh plants. I. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae). Am J Bot 83:1337–1342

    Article  Google Scholar 

  • Wu HJ et al (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109(10):12219–12224

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Song J, Wang H, Feng G (2010) Effect of salinity on seed germination, ion content and photosynthesis of cotyledons of halophytes or xerophyte growing in central Asia. J Plant Ecol 3:259–267

    Article  Google Scholar 

  • Zhao JR (1987) Chemical analysis and utility of Nelumbo nucifera. In: China Lotus. Wuhan Inst Bot, Sci Publ, Beijing, in Chinese

    Google Scholar 

Download references

Acknowledgments

We thank the journal’s reviewers for valuable comments; P. Lindner for monitoring imbibition; R.R.O. Loo for new harvest of Nelumbo China Antique fruit; G. Xu and L. Guan for modern crops of China Antique; L. Xu and Y. Liu for advice on cultivation; G. Dodson for Kenilworth Nelumbo harvest; G.H. Liu for Xipaozi fieldwork; and M. Berg for pericarp test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shen-Miller.

Additional information

Communicated by Robert Paull

J. Shen-Miller for manuscript preparation, field trips, overall experimentation and coordination; L.H. Aung and J. Turek for mechanical properties of Nelumbo fruit and pericarp; J.W. Schopf for Xipaozi field work, fruit cataloguing and figure photoshop; M. Tholandi and A. Czaja for pericarp anatomy; M. Yang for cultivation of Nelumbo fruit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen-Miller, J., Aung, L.H., Turek, J. et al. Centuries-Old Viable Fruit of Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Tropical Plant Biol. 6, 53–68 (2013). https://doi.org/10.1007/s12042-013-9125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9125-1

Keywords

Navigation