Skip to main content
Log in

Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Metabolic engineering of crops is a potential route to economically viable production of polyhydroxyalkanoates (PHAs), biodegradable and renewable alternatives to conventional plastics. In particular, short-chain-length (SCL)/medium-chain-length (MCL) PHA copolymers have attracted commercial interest for their wide range of potential applications. To date, examples of SCL/MCL PHA copolymer production in plant peroxisomes have involved single transgene approaches in transgenic Arabidopsis. We attempted to produce SCL/MCL PHA copolymers using a multigene strategy in peroxisomes of the high biomass food and industrial crop, sugarcane (Saccharum hybrids). Our approach involved peroxisomal targeting of a 3-ketothiolase, acetoacetyl-CoA reductase, enoyl-CoA hydratase and PHA synthase, as well as plastid targeting of a acyl-ACP thioesterase and 3-ketoacyl-ACP synthase to increase peroxisomal β-oxidation flux. Of 143 transgenic sugarcane lines generated by co-bombardment with the six transgenes, six were identified with PHA copolymers at up to 0.015% leaf dry mass, consisting mainly of saturated C4–C16 3-hydroxyalkanoic acids. One line with high acetoacetyl-CoA reductase and low 3-ketothiolase transcript levels had increased 3-hydroxybutyrate content, and acyl-ACP thioesterase and 3-ketoacyl-ACP synthase expression were associated with altered MCL monomer profiles. SCL/MCL PHA copolymer from the highest-yielding line showed a weight-average molecular weight of 111 KDa and polydispersity index of 1.2. Transmission electron microscopy of leaf sections from this line indicated the presence of PHA granules in peroxisomes. This work demonstrates SCL/MCL PHA copolymer biosynthesis in sugarcane peroxisomes and provides a basis for further development of mechanisms for controlling PHA composition in transgenic crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACP:

Acyl carrier protein

DM:

Dry mass

HPLC:

High performance liquid chromatography

PDI:

Polydispersity index

PHA:

polyhydroxyalkanoate

PHB:

polyhydroxybutyrate

SCL:

short-chain-length

MCL:

medium-chain-length

GC-MS:

gas chromatography–mass spectrometry

GPC:

gel permeation chromatography

References

  • Arai Y, Nakashita H, Suzuki Y et al (2002) Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes, and their use in monitoring short-chain-length intermediates of beta-oxidation. Plant Cell Physiol 43:555–562

    Article  PubMed  CAS  Google Scholar 

  • Arent S, Pye VE, Henriksen A (2008) Structure and function of plant acyl-CoA oxidases. Plant Physiol Biochem 46:292–301

    Article  PubMed  CAS  Google Scholar 

  • Birch RG, Bower RS, Elliott AR (2010) Highly efficient, 5′-sequence-specific transgene silencing in a complex polyploid. Trop Plant Biol 3:88–97

    Article  CAS  Google Scholar 

  • Bohlmann GM (2006) Polyhydroxyalkanoate production in crops. In: Bozell JJ (ed) Feedstocks for the future: renewables for the production of chemicals and materials. American Chemical Society Symposium Series 921, vol 921. Oxford University Press, Oxford, pp 253–270

    Chapter  Google Scholar 

  • Bohmert K, Balbo I, Kopka J et al (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845

    Article  PubMed  CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM et al (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes—structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Ding CM, Cantor CR (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci USA 100:3059–3064

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromol 28:4822–4828

    Article  CAS  Google Scholar 

  • Froman BE, Edwards PC, Bursch AG et al (2000) ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis. Plant Physiol 123:733–741

    Article  PubMed  CAS  Google Scholar 

  • Goepfert S, Poirier Y (2007) Beta-oxidation in fatty acid degradation and beyond. Curr Opin Plant Biol 10:245–251

    Article  PubMed  CAS  Google Scholar 

  • Hahn JJ, Eschenlauer AC, Sleytr UB et al (1999) Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog 15:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. App Microbiol Biotechnol 74:1–12

    Article  CAS  Google Scholar 

  • Holmes PA (1988) Biologically produced PHA polymers and copolymers. In: Bassett DC (ed) Developments in Crystalline Polymers—2. Elsevier Applied Science Publ, London/New York, pp 1–65

    Chapter  Google Scholar 

  • Huang AHC, Trelease RN, Moore TS (1983) Plant peroxisomes. Academic, New York

    Google Scholar 

  • Kato M, Bao HJ, Kang CK et al (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium chain length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. App Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Lee EY, Jendrossek D, Schirmer A et al (1995) Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. App Microbiol Biotechnol 42:901–909

    Article  CAS  Google Scholar 

  • Lee SH, Oh DH, Ahn WS et al (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244

    Article  PubMed  CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6:1–8

    Article  CAS  Google Scholar 

  • Leonard JM, Slabaugh MB, Knapp SJ (1997) Cuphea wrightii thioesterases have unexpected broad specificities on saturated fatty acids. Plant Mol Biol 34:669–679

    Article  PubMed  CAS  Google Scholar 

  • Leonard JM, Knapp SJ, Slabaugh MB (1998) A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases. Plant J 13:621–628

    Article  PubMed  CAS  Google Scholar 

  • Liebergesell M, Fallis P, Dong J et al (2002) Polyhydroxyalkanoate synthase genes. US Patent 6,475,734,

  • Matsumoto K, Nagao R, Murata T et al (2005) Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromol 6:2126–2130

    Article  CAS  Google Scholar 

  • Matsumoto K, Arai Y, Nagao R et al (2006) Synthesis of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers in peroxisome of the transgenic Arabidopsis thaliana harboring the PHA synthase gene from Pseudomonas sp 61–3. J Polymers Env 14:369–374

    Article  CAS  Google Scholar 

  • Matsumoto K, Murata T, Nagao R et al (2009) Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromol 10:686–690

    Article  CAS  Google Scholar 

  • McQualter RB, Fong Chong B, Baker A et al (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3:29–41

    Article  PubMed  CAS  Google Scholar 

  • Mittendorf V, Robertson EJ, Leech RM et al (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc Natl Acad Sci USA 95:13397–13402

    Article  PubMed  CAS  Google Scholar 

  • Mittendorf V, Bongcam V, Allenbach L et al (1999) Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation. Plant J 20:45–55

    Article  PubMed  CAS  Google Scholar 

  • Mudge SR, Osabe K, Casu RE et al (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Arai Y, Yoshioka K et al (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874

    Article  CAS  Google Scholar 

  • Noda I, Bond EB, Green PR et al (2005a) Preparation, properties, and utilization of biobased biodegradable NodaxTM copolymers. In: Cheng HN, Gross RA (eds) Polymer Biocatalysis and Biomaterials. American Chemical Society Symposium Series, vol 900. Oxford University Press, Oxford, pp 280–291

    Google Scholar 

  • Noda I, Green PR, Satkowski MM et al (2005b) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromol 6:580–586

    Article  CAS  Google Scholar 

  • Nomura CT, Taguchi S (2007) PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. App Microbiol Biotechnol 73:969–979

    Article  CAS  Google Scholar 

  • Oeth P, Correll D, Jurinke C (2004) Multiplexed gene expression analysis using competitive PCR and MassARRAYTM. In: Sequenom® Application Notes. Sequenom® Inc. http://www.sequenom.com/Assets/pdfs/appnotes/Multiplexing_for_Gene_Expression_Analysis.pdf Cited 30 June 2008

  • Petrasovits LA, Purnell MP, Nielsen LK et al (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172

    Article  PubMed  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chemical Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995a) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnol 13:142–150

    Article  CAS  Google Scholar 

  • Poirier Y, Somerville C, Schechtman LA et al (1995b) Synthesis of high-molecular-weight poly([R]-(−)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int J Biol Macromol 17:7–12

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Ventre G, Caldelari D (1999) Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121:1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Gruys KJ (2005) Production of polyhydroxyalkanoates in transgenic plants. In: Doi Y, Steinbüchel A (eds) Polyesters I: biological systems and biotechnological production. Biopolymers, vol 3a. Wiley-VCH, Weinheim, pp 281–316

    Google Scholar 

  • Purnell MP, Petrasovits LA, Nielsen LK et al (2007) Spatio-temporal characterization of polyhydroxybutyrate accumulation in sugarcane. Plant Biotechnol J 5:173–184

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  CAS  Google Scholar 

  • Romano A, van der Plas LHW, Witholt B et al (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464

    Article  PubMed  CAS  Google Scholar 

  • Satkowski MM, Melik DH, Autran J-P et al (2001) Physical and processing properties of polyhydroxyalkanoate copolymers. In: Doi Y, Steinbüchel A (eds) Polyesters II: properties and chemical synthesis. Biopolymers, vol 3b. Wiley VCH, Weinheim, pp 231–264

    Google Scholar 

  • Slabaugh MB, Leonard JM, Knapp SJ (1998) Condensing enzymes from Cuphea wrightii associated with medium chain fatty acid biosynthesis. Plant J 13:611–620

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Micro Lett 128:219–228

    Article  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. In: Scheper T (ed) Advances in biochemical engineering/biotechnology 71. Springer, Heidelberg, pp 81–123

    Google Scholar 

  • Tilbrook K, Gnanasambandam A, Schenk PM et al (2010) Efficient targeting of polyhydroxybutyrate biosynthetic enzymes to plant peroxisomes requires more than three amino acids in the carboxyl-terminal signal. J Plant Physiol 167:329–332

    Article  PubMed  CAS  Google Scholar 

  • Tilbrook K, Gebbie L, Schenk PM et al (2011) Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnol J (In press). doi:10.1111/j.1467-7652.2011.00600.x

  • Tsuge T, Taguchi K, Taguchi S et al (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid beta-oxidation. Int J Biol Macromol 31:195–205

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Volokita M (1991) The carboxy-terminal end of glycolate oxidase directs a foreign protein into tobacco leaf peroxisomes. Plant J 1:361–366

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Wu ZY, Zhang XH et al (2005) Synthesis of medium-chain-length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering. Chinese Sci Bull 50:1113–1120

    Article  CAS  Google Scholar 

  • Zou XH, Chen GQ (2007) Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Macromol Biosci 7:174–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded jointly by the Australian Government through the Co-operative Research Centre for Sugarcane Industry Innovation through Biotechnology (CRCSIIB) and BSES Limited. AG was a recipient of a Smart State Fellowship awarded by the Department of State Development, Trade and Innovation of the Queensland Government. We wish to thank Ms. Liz Burns (BSES Limited) for assistance with initial GC-MS screening; Mr. Niall Masel, BSES Limited, for assistance with GPC analysis; Dr. Deb Stenzel, Queensland University of Technology, and Ms. Kimberley Tilbrook, The University of Queensland, for assistance with transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevens M. Brumbley.

Additional information

Communicated by: Robert Birch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.J., Gnanasambandam, A., Mills, E. et al. Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants. Tropical Plant Biol. 4, 170–184 (2011). https://doi.org/10.1007/s12042-011-9080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-011-9080-7

Keywords

Navigation