Skip to main content
Log in

Karyotype diversity in cultivated and wild Indian rice through EMA-based chromosome analysis

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

India is known for its diverse cultivated and wild rice germplasm. In today’s crop improvement programmes, wild relatives are much-needed genetic repository of valuable traits. Analysis of genetic diversity at the chromosomal level is one cost-effective tool to unlock foundational information related to genetics and plant breeding. Presently, enzymatic maceration and air-drying method (EMA) has been applied for the first time in six cultivated and nine wild Indian rice (diploid and tetraploid). EMA method following Giemsa staining has yielded large numbers of cytoplasm free metaphase plates with distinct chromosome morphology. Detailed analysis has revealed karyotype diversities in terms of total chromatin length (TCL), chromosome morphology and location of sat chromosomes within and between the studied species. Most of the cultivated rice has gained additional amount in TCL during the period of domestication in comparison to their progenitor Oryza nivara. Morphological clarity of the small chromosomes of rice was much required and has helped to identify individual chromosomes in the diverse karyotypes. Diversity in landmark SAT chromosomes is another important observation, not reported previously in Indian rice. Present study has shown that in most of the O. sativa members, the 10th pair contains SAT except one where 6th pair is satellited. On the other hand, diversity of SAT in diploid and tetraplod wild species has been recorded on 5th, 7th and 8th chromosome pairs and on 9th, 12th, 22nd and 23rd chromosome pairs, respectively. Karyomorphometric indices has helped to construct dendrogram to elucidate intraspecies and interspecies relationships. Untapped genetic diversity recorded in Indian rice through chromosomal analysis will be useful to the breeders and genome researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ansari H. A., Ellison N. W., Bassett S. A., Hussain S. W., Bryan G. T. and Williams W. M. 2016 Fluorescence chromosome banding and FISH mapping in perennial ryegrass, Lolium perenne L. BMC Genom. 17, 1–9.

    Article  Google Scholar 

  • Arano H. 1963 Cytolgical studies in subfamily carduoideae (compositae) of Japan, IX. The karyotype analysis and phylogenic consideration of Pertya and Ainsliaea. Bot. Mag. 76, 32–39.

    Article  Google Scholar 

  • Baltisberger M. and Hörandl E. 2016 Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae). Pers. Plant Ecol. Evol. Syst. 18, 1–14.

    Article  Google Scholar 

  • Baral J. B. and Bosland P. W. 2002 Genetic diversity of a Capsicum germplasm collection from Nepal as determined by randomly amplified polymorphic DNA markers. J. Am. Soc. Hort. Sci. 127, 316–324.

    Article  Google Scholar 

  • Biology of Oryza sativa L. (Rice) @ DBT 2011 Ministry of Science & Technology & Ministry of Environment & Forests, Govt. of India, 1–63.

  • Bhowmick B. K. and Jha S. 2021 A comparative account of fluorescent banding pattern in the karyotypes of two Indian luffa species. Cytologia 86, 35–39.

    Article  Google Scholar 

  • Brar D. S. and Khush G. S. 2018 Wild relatives of rice: a valuable genetic resource for genomics and breeding research. In The wild Oryza genomes (ed. T. K. Mondal and R. J. Henry), pp. 1-26. Springer.

  • Choudhary G., Ranjitkumar N., Surapaneni M., Deborah D. A., Vipparla A., Anuradha G. et al. 2013 Molecular genetic diversity of major Indian rice cultivars over decadal period. PLoS One 8, e66197.

  • Chowrasia S., Nishad J., Pandey R. and Mondal T. K. 2021 Oryza coarctata is a triploid plant with initial events of C4 photosynthesis evolution. Plant Sci. 308.

  • Cheng Z., Buell C. R., Wing R. A., Gu M. and Jiang J. 2001 Toward a cytological characterization of the rice genome. Genome Res. 11, 2133–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z. K. and Gu M. H. 1994 Karyotype analysis for pachytene chromosome of indica, japonica rice and their hybrid. Chin. J. Genet. 21, 182–187.

    Google Scholar 

  • Costa L., Jimenez H., Carvalho R., Carvalho-Sobrinho J., Escobar I. and Souza G. 2020 Divide to conquer: evolutionary history of Allioideae Tribes (Amaryllidaceae) is linked to distinct trends of karyotype evolution. Front. Plant Sci. 11, 320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasgupta T., Hossain S. A., Meharg A. A. and Price A. H. 2004 An arsenate tolerance gene on chromosome 6 of rice. New Phytologist. 163, 45–49.

    Article  CAS  Google Scholar 

  • Deakin J. E., Potter S., O’Neill R., Ruiz-Herrera A. et al. 2019 Chromosomics: bridging the gap between genomes and chromosomes. Genes 10, 1–17.

    Article  Google Scholar 

  • Dempewolf H., Baute G., Anderson J., Kilian B., Smith C. and Guarino L. 2017 Past and future use of wild relatives in crop breeding. Crop Sci. 57, 1070–1082.

    Article  Google Scholar 

  • Eckardt N. A. 2000 Sequencing the rice genome. Plant Cell. 12, 2011–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui K. 1990 Localization of rRNA genes on rice chromosomes. Rice Biotech. Quart. 1, 18–19.

    Google Scholar 

  • Fukui K. and Iijima K. 1991 Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet. 81, 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Fukui K., Ohmido N. and Khush G. S. 1994 Variability in rDNA loci in genus Oryza detected through fluorescence in situ hybridization. Theor. Appl. Genet. 87, 893–899.

    Article  CAS  PubMed  Google Scholar 

  • Fukui K. 1996 Plant chromosomes at mitosis. In Plant chromosomes: laboratory methods (ed. K. Fukui and S. Nakayama), pp. 1–18. CRC Press, Boca Raton.

  • Ge S., Sang T., Lu B. R. and Hong D. Y. 1999 Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl. Acad. Sci. USA 96, 14400–14405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra M. 2008 Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet. Gen. Res. 120, 339–350.

    Article  CAS  Google Scholar 

  • Global Rice Science Partnership 2013 Rice almanac, 4th edition. International Rice Research Institute. Los Baños, Philippines.

  • Greilhuber J. and Speta F. 1976 C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst. Evol. 126, 149–188.

    Article  Google Scholar 

  • Hizume M. 2015 Fluorescent banding pattern in chromosomes of Tsuga forrestii and T. Sieboldii Pinaceae. Chromosome Bot. 10, 95–100.

    Article  Google Scholar 

  • Hou L., Xu M., Zhang T., Xu Z. et al. 2018 Chromosome painting and its applications in cultivated and wild rice. BMC. Plant Biol. 18, 1–10.

    Article  Google Scholar 

  • Huziwara Y. 1962 Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Aster. Am. J. Bot. 49, 116–119.

    Article  Google Scholar 

  • Jena K. K. 1994 Production of intergeneric hybrid between Oryza sativa L. and Porteresia coarctata T. Curr. Sci. 67, 744–746.

    Google Scholar 

  • Jha T. B. and Halder M. 2016 Searching chromosomal landmarks in Indian Lentils through EMA-based Giemsa staining method. Protoplasma 253, 1223–1231.

    Article  PubMed  Google Scholar 

  • Jha T. B. and Saha P. S. 2017 Characterization of some Indian Himalayan Capsicums through floral morphology and EMA based chromosome analysis. Protoplasma 254, 921–933.

    Article  PubMed  Google Scholar 

  • Jha T. B. and Bhowmick B. K. 2021 Unraveling the genetic diversity and phylogenetic relationships of Indian Capsicum through fluorescent banding. Genet. Res. Crop Evol. 68, 205–225.

    Article  CAS  Google Scholar 

  • Kurata N. 2008 Chromosome analysis of mitosis and meiosis in rice. Rice Genet. 1, 143–152.

    Article  Google Scholar 

  • Kurata N., Omura T. and Iwata N. 1981 Studies on centromere, chromomere and nucleolus in pachytene nuclei of rice Oryza sativa, microsporocytes. Cytologia 46, 791–800.

    Article  Google Scholar 

  • Khush G. S., Singh R. J., Sur S. C. and Librojo A. L. 1984 Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics 107, 141–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurata N. and Omura T. 1978 Karyotype analysis in rice a new method for identifying all chromosome pairs. Jap. J. Genet. 53, 251–255.

    Article  Google Scholar 

  • Kuwada Y. 1910 A cytological study of Oryza sativa L. Bot. Mag. Tokyo 24, 267–281.

    Article  Google Scholar 

  • Levan A., Fredga K. and Sandberg A. A. 1964 Nomenclature for centromeric position on chromosomes. Hereditus 52, 201–220.

    Article  Google Scholar 

  • Levin D. A. 2002 The role of chromosomal change in plant evolution, Oxford University Press, New York.

    Google Scholar 

  • Linc G., Ga Â. E., Âr Molna, Icso Â. D., Badaeva E. and LaÂng M. . Ar. . 2017 Molecular cytogenetic (FISH) and genome analysis of diploid wheat grasses and their phylogenetic relationship. PLoS One 12, 1–18.

    Article  Google Scholar 

  • Lu B. R., Naredo Ma E. B., Juliano A. B. and Jackson M. 2000 Preliminary studies on taxonomy and biosystematics of the AA genome oryza species (Poaceae). In Grass: systematics and evolution (ed. S. W. L. Jacobs and J. Everett), pp. 51–58. CSIRO, Melbourne.

  • Lu B. R., Jackson M. and Vaughan D. 2002 Wild Rice Taxonomy. IRRI.

  • Moscone E. A., Lambrou M. and Ehrendorfer F. 1996 Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst. Evol. 202, 37–63.

    Article  Google Scholar 

  • Ohmido N., Fukui K. and Kinoshita T. 2010 Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc. Jpn. Acad. Ser. 2, 103–116.

    Article  Google Scholar 

  • Paszko B. 2006 A critical review and a new proposal of karyotype asymmetry indices. Plant. Syst. Evol. 258, 39–48.

    Article  Google Scholar 

  • Pathak G. N. 1940 Studies in the cytology of cereals. Ph.D. thesis, pp. 437-467. University of London.

  • Peruzzi L. and Eroğlu H. E. 2013 Karyotype asymmetry: again, how to measure and what to measure? Comp. Cytogenet. 7, 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richharia R. H. and Govindasamy S. 1990 Rices of India. Academy of Development Science. Karjat.

  • Rice Chromosomes 11 and 12 Sequencing Consortia 2005 The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol. 3, 1–18.

  • Saha P. S., Nandagopal K., Ghosh B. and Jha S. 2012 Molecular characterization of aromatic Oryza sativa L. cultivars from West Bengal India. Nucleus 55, 83–88.

    Article  Google Scholar 

  • Sanchez P. L., Wing R. A. and Brar D. S. 2013 The wild relatives of rice: genomes and genomics. In Genetics and genomics of rice, plant genetics and genomics: crops and models (ed. Q. Zhang and R. A. Wing), pp. 9-25. Springer, New York.

    Chapter  Google Scholar 

  • Sasaki T. 2001 Rice genome analysis to understand the rice plant as an assembly of genetic codes. Photosynth. Res. 70, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Schneeweiss W. H. and Schneeweiss G. M. 2013 Karyotype diversity and evolutionary trend in angiosperms. In Plant genome diversity volume 2. Physical structure, behaviour and evolution of plant genomes (ed. I. J. Leitch, J. Greilhuber , J. Dolezel, J. F. Wendel), pp. 209–230. Springer, Vienna.

  • Seijo J. G. and Fernandez A. 2003 Karyotype analysis and chromosome evolution in south american species of Lathyrus (Leguminosae). Am. J. Bot. 90, 980–987.

    Article  PubMed  Google Scholar 

  • Shakiba E. and Eizenga G. C. 2014 Unraveling the secrets of rice wild species. In Rice-germplasm, genetics and improvement (ed. W. Yan and J. Bao), pp. 1–58. Tech Open.

  • Sokal R. R., Rohlf F. J. 1995 Biometry: the principles and practice of statistics in biological research, 3rd edition., Freeman, New York.

    Google Scholar 

  • Sharma A. K. and Mukhopadhyay S. 1965 Application of improved method on karyotype analysis of different species and varieties of Oryza. Oryza 2, 25–35.

    Google Scholar 

  • Shastry S. V. S. 1964 A new approach to the study of rice karyomorphology. In Rice genetics and cytogenetics, pp. 62–67. Elsevier, Amsterdam.

  • Singh N., Roy Choudhury D., Tiwari G., Singh A. K., Kumar S., Srinivasan K. et al. 2016 Genetic diversity trend in Indian rice varieties: an analysis using SSR markers. BMC Genet. 17.

  • Soltis D. E. 2014 Chromosome data. Iran J. Bot. 20, 228–229.

    Google Scholar 

  • Stebbins G. L. 1971 Chromosomal changes, genetic recombination and speciation. In Chromosomal evolution in higher plants (ed. E. J. W. Barrington and A. J. Willis), pp. 216. Edward Arnold Publishers, London.

  • Uozu S., Ikehashi H., Ohmido N., Ohtsubo H., Ohtsubo E. and Fukui K. 1997 Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol. Biol. 35, 791–799.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan D. A. 1994 Wild relatives of rice, genetic resources handbook. International Rice Research Institute, Los Banos.

  • Vimala Y., Lavania S. and Lavania U. C. 2021 Chromosome change and karyotype differentiation–implications in speciation and plant systematics. Nucleus 64, 33–54.

    Article  Google Scholar 

  • Yamamoto M., Takeuchi M., Nashima K. and Yamamoto T. 2019 Enzyme maceration, fluorescent staining, and FISH of rDNA of pineapple (Ananas comosus (L.) Merr. Chromosomes. Hortic. J. 88, 455–461.

    Article  CAS  Google Scholar 

  • Zarco C. R. 1986 A new method for estimating karyotype asymmetry. Taxon 35, 526–530.

    Article  Google Scholar 

Download references

Acknowledgements

TBJ acknowledges the Director and Dr B. C. Patra Central Rice Research Institute Cuttack for providing valuable Rice germplasms. Principal Dr S. Dutta, and Dr P. Roy, Head, Dept. of Botany Maulana Azad College is duly acknowledged for providing all basic facilities. Author also acknowledges technical support extended by Dr P. S. Saha and Dr B. K. Bhowmick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timir Baran Jha.

Additional information

Corresponding editor: Durgadas P. Kasbekar

This paper is dedicated to my beloved teacher and renowned plant cytogeneticist Prof. Arun Kumar Sharma (late) for his inspiration in rice chromosome research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, T.B. Karyotype diversity in cultivated and wild Indian rice through EMA-based chromosome analysis. J Genet 100, 81 (2021). https://doi.org/10.1007/s12041-021-01332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01332-z

Keywords

Navigation