Skip to main content
Log in

A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Dwarf plant height and tillering ability are two of the most important agronomic traits that determine the plant architecture, and have profound influence on grain yield in rice. To understand the molecular mechanism controlling these two traits, an EMS-induced recessive dwarf and increased tillering1 (dit1) mutant was characterized. The mutant showed proportionate reduction in each internode as compared to wild type revealing that it belonged to the category of dn-type of dwarf mutants. Besides, exogenous application of GA3 and 24-epibrassinolide, did not have any effect on the phenotype of the mutant. The gene was mapped on the long arm of chromosome 4, identified through positional candidate approach and verified by cosegregation analysis. It was found to encode carotenoid cleavage dioxygenase7 (CCD7) and identified as an allele of htd1. The mutant carried substitution of two nucleotides CC to AA in the sixth exon of the gene that resulted in substitution of serine by a stop codon in the mutant, and thus formation of a truncated protein, unlike amino acid substitution event in htd1. The new allele will facilitate further functional characterization of this gene, which may lead to unfolding of newer signalling pathways involving plant development and architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akiyama K., Matsuzaki K. and Hayashi H. 2005 Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Arite T., Iwata H., Ohshima K., Maekawa M., Nakajima M., Kojima M. and et al. 2007 DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant. J. 51, 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  • Arite T., Umehara M., Ishikawa S., Hanada A., Maekawa M., Yamaguchi S. and et al. 2009 d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant. Cell. Physiol. 50, 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  • Asano K., Hirano K., Ueguchi-Tanaka M., Angeles-Shim R. B., Komura T., Satoh H. and et al. 2009 Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol. Genet. Genomics 281, 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M., Wu J., Yano M., Sasaki T. and Yoshimura A. 1999 Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96, 10284–10289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashikari M., Sasaki A., Ueguchi-Tanaka M., Itoh H., Nishimura A., Datta S. and et al. 2002 Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed. Sci. 52, 143–150.

    Article  CAS  Google Scholar 

  • Beveridge C. A. 2006 Axillary bud outgrowth: sending a message. Curr. Opin. Plant. Biol. 9, 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Booker J., Auldridge M., Wills S., McCarty D., Klee H. and Leyser O. 2004 MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  • Booker J., Sieberer T., Wright W., Williamson L., Willett B., Stirnberg P. and et al. 2005 MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8, 443–449.

    Article  CAS  PubMed  Google Scholar 

  • Chen H. X., Zhou C. B. and Xing Y. Z. 2011 A new rice dwarf1 mutant caused by a frame-shift mutation. Yi Chuan 33, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Churchill G. A. and Doerge R. W. 1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook C., Whichard L., Wall M., Egley G., Coggon P., Luhan P. and et al. 1972 Germination stimulants. 2. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.) J. Am. Chem. Soc. 94, 6198–6199.

    Article  CAS  Google Scholar 

  • da Maia L. C., Palmieri D. A, de Souza V. Q., Kopp M. M., de Carvalho F. I. and Costa de Oliveira A. 2008 SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008, 412696.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doerge R. W. and Churchill G. A. 1996 Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285–294.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissues. Focus 12, 13–15.

    Google Scholar 

  • Ellis M. and Spielmeyer W. 2002 ‘Perfect’ markers for the rice sd1 semidwarfing gene. Int. Rice Res. Notes 27, 13–14.

    Google Scholar 

  • Fan C., Xing Y., Mao H., Lu T., Han B., Xu C. and et al. 2006 GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  • Gao Z., Qian Q., Liu X., Yan M., Feng Q., Dong G. and et al. 2009 Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant. Mol. Biol. 71, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Hall T. A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hedden P. 2003 The genes of the green revolution. Trends Genet. 19, 5–9.

    Article  CAS  PubMed  Google Scholar 

  • Hong Z., Ueguchi-Tanaka M., Umemura K., Uozu S., Fujioka S., Takatsuto S. and et al. 2003 A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell. 15, 2900–2910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda A., Ueguchi-Tanaka M., Sonoda Y., Kitano H., Koshioka M., Futsuhara Y. and et al. 2001 Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa S., Maekawa M., Arite T., Onishi K., Takamure I. and Kyozuka J. 2005 Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell. Physiol. 46, 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Itoh H., Tatsumi T., Sakamoto T., Otomo K., Toyomasu T., Kitano H. and et al. 2004 A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol. Biol. 54, 533–547.

    Article  CAS  PubMed  Google Scholar 

  • Iwata N., Takamure I., Wu H. K., Siddinq E. A. and Rutger J. N. 1995 List of genes for various traits (with chromosome and main literature). Rice Genet. News 12, 61–93.

    Google Scholar 

  • Jiang H. P., Zhang S. Y., Bao J. S., Wang B. L. and Wang S. 2009 Genetic analysis and mapping of high-tillering and dwarf mutant htd1-2 in rice. Yi Chuan 31, 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Khush G. S. 1999 Green revolution: preparing for the 21st century. Genome 42, 646–655.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T. and Takahashi M. 1991 The one hundredth report of genetic studies on rice plant. J. Fac. Agr. Hokkaido Univ. 65, 1–61.

    Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distance from recombination values. Ann. Eugen.. 12, 172–175.

  • Kulkarni K. P., Vishwakarma C., Sahoo S. P., Lima J. M., Nath N., Dokku P. and et al. 2013 Phenotypic characterization and genetic analysis of dwarf and early flowering mutants of rice variety Nagina22. An Int. J. Rice 50, 18–25.

    Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. and et al. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Lebkowski J. S., Miller J. H. and Calos M. P. 1986 Determination of DNA sequence changes induced by ethyl methanesulfonate in human cells, using a shuttle vector system. Mol. Cell Biol. 6, 1838–1842.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li W. C., Wang Y. F., Ma S. M. and Guo S. W. 2010 Genetic analysis and molecular mapping of a high-tillering mutant (ht1) in rice . Yi Chuan 32, 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  • Li X., Qian Q., Fu Z., Wang Y., Xiong G., Zeng D. and et al. 2003 Control of tillering in rice. Nature 422, 618–621.

    Article  CAS  PubMed  Google Scholar 

  • Lin H., Wang R., Qian Q., Yan M., Meng X., Fu Z. and et al. 2009 DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512–1525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu L., Yan W., Xue W., Shao D. and Xing Y. 2012 Evolution and association analysis of Ghd7 in rice. PLoS One e34021, 7.

    Google Scholar 

  • McCouch S. R., Teytelman L., Xu Y., Lobos K. B., Clare K., Walton M. and et al. 2002 Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res. 9, 257–279.

    Article  CAS  PubMed  Google Scholar 

  • Mise K., Tsuge S., Nagao K., Okuno T. and Furusawa I. 1992 Nucleotide sequence responsible for the synthesis of a truncated coat protein of brome mosaic virus strain ATCC66. J. Gen. Virol. 73, 2543–2551.

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra T., Robin S., Sarla N., Sheshashayee M., Singh A. K., Singh K. et al. 2014 EMS induced mutants of upland rice variety Nagina22: generation and characterization. Proc. Indian Nat. Sci. Acad. 80, 163–172.

  • Ongaro V. and Leyser O. 2008 Hormonal control of shoot branching. J. Exp. Bot. 59, 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Peng J., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E. and et al. 1999 ’Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Rutger J. N. 1984 Induced semidwarf mutants. Rice Genet. News 1, 92–93.

    Google Scholar 

  • Silverstone A. L. and Sun T. 2000 Gibberellins and the Green Revolution. Trends Plant. Sci. 5, 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W., Ellis M. H. and Chandler P. M. 2002 Semidwarf (sd1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 99, 9043–9048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda K. 1977 Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym. 16, 1–18.

    Google Scholar 

  • Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M. and et al. 2005 A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17, 776–790.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temnykh S., Park W. D., Ayers N., Cartinhour S., Hauck N., Lipovich L. and et al. 2000 Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) Theor. Appl. Genet. 100, 697–712.

    Article  CAS  Google Scholar 

  • Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M. and et al. 2005 GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698.

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R. E. 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2012 Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.

    Google Scholar 

  • Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S. and et al. 2000 Loss of function of a rice brassinosteroid insensitive1homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591–1606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan H., Saika H., Maekawa M., Takamure I., Tsutsumi N., Kyozuka J. and et al. 2007 Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet. Syst. 82, 361– 366.

    Article  CAS  PubMed  Google Scholar 

  • Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. 1998 Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) Theor. Appl. Genet. 97, 267–274.

    Article  CAS  Google Scholar 

  • Zeng Z. B. 1993 Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90, 10972–10976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci . Genetics 136, 1457–1468.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B., Tian F., Tan L., Xie D. and Sun C. 2011 Characterization of a novel high-tillering dwarf 3 mutant in rice. J. Genet. Genomics 38, 411–418.

    Article  PubMed  Google Scholar 

  • Zou J., Chen Z., Zhang S., Zhang W., Jiang G., Zhao X. and et al. 2005 Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.) Planta 222, 604–612.

    Article  CAS  PubMed  Google Scholar 

  • Zou J., Zhang S., Zhang W., Li G., Chen Z., Zhai W. and et al. 2006 The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48, 687–698.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out in the project entitled ‘Generation, characterization and use of EMS-induced mutants of upland variety Nagina22 for functional genomics of rice’ funded by the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. SHARMA.

Additional information

[Kulkarni K. P., Vishwakarma C., Sahoo S. P., Lima J. M., Nath M., Dokku P., Gacche R. N., Mohapatra T., Robin S., Sarla N., Seshashayee M., Singh A. K., Singh K., Singh N. K. and Sharma R. P. 2014 A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J. Genet. 93, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KULKARNI, K.P., VISHWAKARMA, C., SAHOO, S.P. et al. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J Genet 93, 389–401 (2014). https://doi.org/10.1007/s12041-014-0389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0389-5

Keywords

Navigation