Skip to main content
Log in

Expression and identification of folate-sensitive fragile sites in British Suffolk sheep (Ovis aries)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

An investigation to understand the dynamics and biological significance of fragile site expression, and identification of 5-fluorodeoxyuridine (FUdR) induced chromosomal gaps/breaks, were carried out in an experimental flock of 45 Suffolk sheep. The statistical comparison revealed, highly significant variation in the frequency of chromosomal fragile site expression between control and FUdR cultures. Mean (± S.D.) values for cells with gaps and breaks, or aberrant cell count (AC), and the number of aberrations (NoA) per animal were 2.02 ± 0.34, 2.42 ± 0.48, 13.26 ± 0.85 and 21.87 ± 1.88 (P < 0.01) in control and FUdR cultures, respectively. The comparison of age revealed nonsignificant variation between control and FUdR cultures. The G-band analysis of fragile site data revealed gaps in 29 autosomal and two X-chromosomal bands in the control cultures, whereas FUdR treated cultures scored 78 unstable bands in autosomes of which 56 were significantly fragile. X-chromosomes expressed breaks and gaps in six G-negative bands and five of them (Xq13, Xq15, Xq17, Xq24 and Xq26) were significantly fragile. The distribution comparison of autosomal fragile sites between sex groups did not reveal any significant variation. Female X-chromosomes were significantly more fragile than the male X-chromosomes. The distribution comparison for age groups (lambs versus adults) revealed significantly higher number of fragile bands in adults. Comparison of published data on reciprocal translocations in sheep with the fragile-site data obtained in this study indicated that the break sites of both phenomena were correlated. Similarities were also found between fragile sites and breakpoints of evolutionary significance in family Bovidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed S. 2005 New classes of fragile sites in buffalo chromosomes. Cytologia 70, 4415–4417.

    Article  Google Scholar 

  • Bohm U., Dahm P. F., McAllister B. F. and Greenbaum I. F. 1995 Identifying chromosomal fragile sites from individuals: a multinomial statistical model. Hum. Genet. 95, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Broad T. E., Mclean N., Grimaldi D. and Monk N. 2000 A novel occurrence in sheep (Ovis aries) of four homozygous Robertsonian translocations. Hereditas 132, 165–166.

    Article  Google Scholar 

  • Cribiu E. P., Durand V. and Saget O. 1991 Cytogenetic investigation in Booroola Merino D’Arles sheep (preliminary results): major genes for reproduction in sheep. In Proceedings of the 2nd international workshop. pp. 305–311, Toulouse.

  • Esposito D., Fassina G., Szabo P., De-Angelis P., Rodgers L., Weksler M. and Siniscalco M. 1989 Chromosomes of older humans are more prone to aminopterin-induced breakage. Proc. Natl. Acad. Sci. USA 86, 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  • Gaddini L., Pellicia F., Limongi M. Z. and Rocchi A. 1995 Study of relationship between common fragile sites, chromosome breakages and sister chromatid exchanges. Mutagenesis 10, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Glover T. W. 1981 FUdR induction of the X chromosome fragile site: evidence for the mechanism of folic acid and thymidine inhibition. Am. J. Hum. Genet. 33, 234–242.

    PubMed  CAS  Google Scholar 

  • Greenbaum I. F. and Dahm P. F. 1995 FSM version 995, an MS-DOS program for the statistical identification of chromosomal fragile sites, User’s Guide. Departments of Biology and Statistics, Texas A and M University, College Station, Texas.

    Google Scholar 

  • Hayes H., Petit E. and Dutrillaux B. 1991 Comparison of RBG-banded karyotypes of cattle, sheep and goats. Cytogenet. Cell Genet. 57, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Hecht F. 1991 Biological induction of chromosome fragile sites. Cancer Genet. Cytogenet. 54, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Holliday R. 1987 The inheritance of epigenetic defects. Science 238, 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L. and Di Meo G. P. 1995 Chromosomal evolution in bovids: a comparison of cattle, sheep and goat G- and R-banded chromosomes and cytogenetic divergences among cattle, goat and river buffalo sex chromosomes. Chromosome Res. 3, 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Iannuzzi L., Di Meo G. P., Perucatti A., Schibler L. and Cribiu E. P. 1999 X-chromosome evolution in domestic bovids studied by comparative banding and FISH-mapping techniques. Cytogenet. Cell Genet. 85, 110–113.

    Google Scholar 

  • ISCNDA 1989 International system for cytogenetic nomenclature of domestic animals. Cytogenet. Cell Genet. 53, 65–79.

    Article  Google Scholar 

  • Krumdieck C. L., Howard-Peebles P. N. and Opitz J. M. 1983 On the nature of folic acid sensitive fragile sites in human chromosomes. Am. J. Med. Genet. 16, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Llambi S. and Nunez R. 2007 Identification of chromosome fragile sites induced by 5 azacytidine in lymphocytes of cattle. Arch. Vet. Med. 39, 63–66.

    CAS  Google Scholar 

  • Long S. E. 1985 Standard nomenclature for the G-band karyotype of the domestic sheep (Ovis aries). Hereditas 103, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Long S. E. 1997 Chromosome abnormalities in domestic sheep. J. Appl. Genet. 38, 65–76.

    Google Scholar 

  • Lopez-Corrals N. L. and Arruga M. V. 1996 Induction of fragile sites in goats: a preliminary study. Genet. Sel. Evol. 28, 129–139.

    Article  Google Scholar 

  • Marlhens F., Achkar W. A. I., Aurias A., Couturier J., Dutrillaux A. M., Gerbault-Sereau M. et al. 1986 The rate of chromosome breakage is age-dependent in lymphocytes of adult control. Hum. Genet. 73, 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Matejka M., Cribiu E. P., Ricordeau G., Eychenne F., Durand V., Lajous D. and Darre R. 1990 Evidence of rare heritable fragile site in Romanov sheep chromosomes. Reprod. Dom. Anim. 25, 220–226.

    Article  CAS  Google Scholar 

  • Mishmer D., Rahat A., Scherer S. W., Nyakatura G., Hinzmann B., Kohwi Y. and Mandel-Gutfreund Y. 1998 Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by cloning of an SV40 integration site. Proc. Natl. Acad.Sci. USA 95, 8146–8147.

    Google Scholar 

  • Nicodemo D., Coppola G., Pauciullo A., Cosenza G., Ramuno L. Ciotola F. et al. 2007 Mapping fragile sites in the standard karyotype of river buffalo (Bubalus bubalis, 2n = 50). Ital. J. Anim. Sci. 6, suppl. 291–294.

    Google Scholar 

  • Riggs P. K. and Kuczek T. 1993 Analysis of aphidicoline-induced chromosome fragile sites in domestic pig (Sus scrofa). Cytogenet. Cell. Genet. 62, 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Ronne M. 1992 Putative fragile sites in the horse karyotype. Hereditas 117, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Ronne M. 1995 Localization of fragile sites in the karyotype of Sus scrofa domestica: present status. Hereditas 122, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A. 2006 Is mammalian chromosome evolution driven by region of genome fragility. Genome Biol. 7, 115–119.

    Article  Google Scholar 

  • Schoket B. 1999 DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mut. Res. 424, 143–153.

    CAS  Google Scholar 

  • Seabright M. 1971 A rapid banding technique for human chromosomes. Lancet 2, 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Schibler L., Roig A., Mahe M. F., Laurent P., Hayes H., Rodolphe F. and Cribiu E. P. 2006 High resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution. BMC Genomics 7, 194–198.

    Article  PubMed  Google Scholar 

  • Smith D. I., Haung H. and Wang L. 1998 Common fragile sites and cancer. Intl. J. Onc. 12, 187–196.

    CAS  Google Scholar 

  • Sram R. J., Binkova B., Rossner P., Rubes J. and Topinka J. 1999 Adverse reproductive outcomes from exposure to environmental mutagens. Mut. Res. 428, 203–215.

    CAS  Google Scholar 

  • Stone D. M. and Stephens K. E. 1993 Bromo-deoxyuridine induces chromosomal fragile sites in canine genome. Am. J. Med. Genet. 46, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland G. R. and Hecht F. 1985 Fragile sites on human chromosomes. Oxford University Press, New York.

    Google Scholar 

  • Yang M. Y. and Long S. E. 1993 Folate-sensitive common fragile sites in chromosomes of the domestic pig (Sus scrofa). Res. Vet. Sci. 55, 231–235.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Abdullah, M., Babar, M.E. et al. Expression and identification of folate-sensitive fragile sites in British Suffolk sheep (Ovis aries). J Genet 87, 219–227 (2008). https://doi.org/10.1007/s12041-008-0035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0035-1

Keywords

Navigation