Skip to main content

Advertisement

Log in

Hybrid thermochromic hydrogels based on HPC/PVA for smart windows with enhanced solar modulation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Energy-saving smart windows could reduce building energy consumption by dynamically regulating solar transmission without consuming additional energy. However, current thermochromic smart windows based on hydroxypropyl cellulose (HPC) are still facing challenges, such as low durability and unsatisfactory in regulating the solar infrared region. To expand hydrogels' modulation ability of infrared region, hydrogels with temperature-sensitive properties of polyvinyl alcohol (PVA) and HPC were prepared and applied in thermochromic smart windows areal. The HPC-PVA hydrogels have an ultra-high luminous transmission in the visible light rather than infrared light regions, blocking most of the sunlight when the temperature increases, thus greatly enhancing the solar modulating ability (∆Tsol) and infrared transmittance modulation (∆TIR). The 4 wt.% PVA doped in HPC exhibits the best solar modulation ability (∆TIR, (20–50 °C) 5.5%, ΔTsol, (20–50 °C) 19.4% and Tlum, 20 °C 91.3%). In addition, these high-performance and temperature-sensitive materials have a high repetition and durability. The hydrogels could obtain adjusting broadband sunlight smart windows with sandwich structure glasses.

Graphic abstract

Hybrid thermochromic hydrogels HPC-PVA were designed by one-step hydrothermal method categories. The hydrogels could increase the temperature-responsive of smart hydrogels, enhance solar modulation and have high luminous transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ke Y, Zhou C, Zhou Y, Wang S, Chan S H and Long Y 2018 Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application Adv. Funct. Mater. 28 1800113

    Article  Google Scholar 

  2. Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y and Long Y 2018 Thermochromic VO2 for energy-efficient smart windows Joule 2 1707

  3. Kang H, Zhang K, Wong D S H, Han F, Li B and Bian L 2018 Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization Biomaterials 178 681

    Article  CAS  PubMed  Google Scholar 

  4. Wang N, Magdassi S, Mandler D and Long Y 2013 Simple sol–gel process and one-step annealing of vanadium dioxide thin films: synthesis and thermochromic properties Thin Solid Films 534 594

  5. Wang S, Liu M, Kong L, Long Y, Jiang X and Yu A 2016 Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties Prog. Mater. Sci. 81 1

    Article  CAS  Google Scholar 

  6. Wang N, Duchamp M, Dunin-Borkowski R E, Liu S, Zeng X, Cao X and Long Y 2016 Terbium-doped VO2 thin films: reduced phase transition temperature and largely enhanced luminous transmittance Langmuir 32 759

  7. Wang N, Liu S, Zeng X, Magdassi S and Long Y 2015 Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature J. Mater. Chem. C 3 6771

    Article  CAS  Google Scholar 

  8. Cao X, Wang N, Magdassi S, Mandler D and Long Y 2014 Europium doped vanadium dioxide material: reduced phase transition temperature, enhanced luminous transmittance and solar modulation Sci. Adv. Mater. 6 558

    Article  CAS  Google Scholar 

  9. Mlyuka N, Niklasson G A and Granqvist C-G 2009 Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature Appl. Phys. Lett. 95 171909

  10. Wang N, Shun N T C, Duchamp M, Dunin-Borkowski R E, Li Z and Long Y 2016 Effect of lanthanum doping on modulating the thermochromic properties of VO2 thin films RSC Adv. 6 48455

  11. Wang N, Duchamp M, Xue C, Dunin-Borkowski R E, Liu G and Long Y 2016 Single-Crystalline W-Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature Adv. Mater. Interfaces 3 1600164

    Article  Google Scholar 

  12. Liu C, Wang N and Long Y 2013 Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation Appl. Surf. Sci. 283 222

    Article  CAS  Google Scholar 

  13. Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, et al. 2011 VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties Sol. Energ. Mat. Sol. C. 95 2677

    Article  CAS  Google Scholar 

  14. Cao X, Wang N, Law J Y, Loo S C J, Magdassi S and Long Y 2014 Nanoporous thermochromic VO2 (M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability Langmuir 30 1710

  15. Kang L, Gao Y, Luo H, Chen Z, Du J and Zhang Z 2011 Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties ACS Appl. Mater. Interfaces 3 135

    Article  CAS  Google Scholar 

  16. Ning W, Yizhong H, Magdassi S, Mandler D, Hai L and Yi L 2013 Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties RSC Adv. 3 7124

  17. Liu P, Liu L, Jiang K and Fan S 2011 Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays Small 7 732

    Article  CAS  PubMed  Google Scholar 

  18. Miao Q, Chen X, Liu L, Peng J and Fang Y 2014 Synergetic effect based gel-emulsions and their utilization for the template preparation of porous polymeric monoliths Langmuir 30 13680

    Article  CAS  PubMed  Google Scholar 

  19. Chen Z, Gao Y, Kang L, Cao C, Chen S and Luo H 2014 Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil J. Mater. Chem. A 2 2718

    Article  CAS  Google Scholar 

  20. Gao Y, Wang S, Kang L, Chen Z, Du J, Liu X, et al. 2012 VO2–Sb: SnO2 composite thermochromic smart glass foil Energ. Environ. Sci. 5 8234

    Article  CAS  Google Scholar 

  21. Cao X, Thet M N, Zhang Y, Loo S C J, Magdassi S, Yan Q and Long Y 2015 Solution-based fabrication of VO2 (M) nanoparticles via lyophilisation RSC Adv. 5 25669

  22. Liu C, Cao X, Kamyshny A, Law J, Magdassi S and Long Y 2014 VO2/Si–Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation J. Colloid. Interf. Sci. 427 49

    Article  CAS  Google Scholar 

  23. Qian X, Wang N, Li Y, Zhang J, Xu Z and Long Y 2014 Bioinspired multifunctional vanadium dioxide: improved thermochromism and hydrophobicity Langmuir 30 10766

    Article  CAS  PubMed  Google Scholar 

  24. Taylor A, Parkin I, Noor N, Tummeltshammer C, Brown M S and Papakonstantinou I 2013 A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing Opt. Express 21 A750

    Article  PubMed  Google Scholar 

  25. Liu C, Balin I, Magdassi S, Abdulhalim I and Long Y 2015 Vanadium dioxide nanogrid films for high transparency smart architectural window applications Opt. Express 23 A124

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Cai Y, Hu X and Long Y 2015 VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission J. Mater. Chem. A 3 1121

    Article  CAS  Google Scholar 

  27. Hea Q, Wang Y J, Zhou Y M, He M, Xu R, Hu S Ch, Wu W T and Wang R L 2019 PAM-PNIPAM/W-doped VO2 thermochromic hydrogel film with high solar modulation capability for smart windows deployment Opt. Mater. 97 109367

  28. Zheng X, Shikha S and Zhang Y 2018 Elimination of concentration dependent luminescence quenching in surface protected upconversion nanoparticles Nanoscale 10 16447

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Gao Y, Cao C, Chen K, Wen Y, Fang D, et al. 2014 Binary solvent colloids of thermosensitive poly (n-isopropylacrylamide) microgel for smart windows Ind. Eng. Chem. Res. 53 18462

    Article  CAS  Google Scholar 

  30. Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S and McGehee M D 2017 Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition Joule 1 133

    Article  CAS  Google Scholar 

  31. Richardson D, Lindley E J, Bartlett C and Will E J 2003 A randomized, controlled study of the consequences of hemodialysis membrane composition on erythropoietic response Am. J. Kidney. Dis. 42 551

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez R a, Alvarez-Lorenzo C and Concheiro A, 2003 Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems J. Control Release 86 253

  33. Li X-H, Liu C, Feng S-P and Fang N X 2019 Broadband light management with thermochromic hydrogel microparticles for smart windows Joule 3 290

    Article  CAS  Google Scholar 

  34. Yao X, Liu J, Yang C, Yang X, Wei J, Xia Y, Gong X and Suo Z 2019 Hydrogel Paint Adv. Mater. 31 e1903062

  35. Francis M F, Piredda M and Winnik F M 2003 Solubilization of poorly water soluble drugs in micelles of hydrophobically modified hydroxypropylcellulose copolymers J. Control Release 93 59

    Article  CAS  PubMed  Google Scholar 

  36. Park C R and Munday D L 2002 Development and evaluation of a biphasic buccal adhesive tablet for nicotine replacement therapy Int. J. Pharma. 237 215

    Article  CAS  Google Scholar 

  37. Siepmann J and Peppasa A N 2012 Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) Adv. Drug Delivery Rev. 64 163

    Article  Google Scholar 

  38. Guo M, Yu Q Q, Wang X C, Xu W X, Wei Y, Ma Y, et al. 2021 Tailoring broad-band-absorbed thermoplasmonic 1D nanochains for smart Windows with adaptive solar modulation ACS Appl. Mater. Interfaces 13 5634

    Article  CAS  PubMed  Google Scholar 

  39. Xia X, Tang S, Lu X and Hu Z 2003 Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution Macromolecules 36 3695

    Article  CAS  Google Scholar 

  40. Zhang H, Xia H and Zhao Y 2012 Poly (vinyl alcohol) hydrogel can autonomously self-heal ACS Macro Lett. 1 1233

  41. He M, Wang Z, Cao Y, Zhao Y, Duan B, Chen Y, et al. 2014 Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility Biomacromolecules 15 3358

    Article  CAS  PubMed  Google Scholar 

  42. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, et al. 2004 PVA hydrogel sheet macroencapsulation for the bioartificial pancreas Biomaterials 25 5885

    Article  CAS  PubMed  Google Scholar 

  43. Wu M, Shi Y, Li R and Wang P 2018 Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance ACS Appl. Mater. Interfaces 10 39819

    Article  CAS  PubMed  Google Scholar 

  44. Stammen J A, Williams S, Ku D N and Guldberg R E 2001 Mechanical properties of a novel PVA hydrogel in shear and unconfined compression Biomaterials 22 799

    Article  CAS  PubMed  Google Scholar 

  45. Jin L and Bai R 2002 Mechanisms of lead adsorption on chitosan/PVA hydrogel beads Langmuir 18 9765

    Article  CAS  Google Scholar 

  46. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, et al. 2016 A zwitterionic gel electrolyte for efficient solid-state supercapacitors Nat. Commun. 7 1

    Article  Google Scholar 

  47. Kokabi M, Sirousazar M and Hassan Z M 2007 PVA–clay nanocomposite hydrogels for wound dressing Eur. Polym. J. 43 773

    Article  CAS  Google Scholar 

  48. Qu Z, Yao L, Li J, He J, Mi J, Ma S, et al. 2019 Bifunctional Template-Induced VO2@SiO2 Dual-Shelled Hollow Nanosphere-Based Coatings for Smart Windows ACS Appl. Mater. Interfaces 11 15960

    Article  CAS  Google Scholar 

  49. Xu Z, Wang S, Hu X-Y, Jiang J, Sun X and Wang L 2018 Sunlight-induced photo-thermochromic supramolecular nanocomposite hydrogel film for energy-saving smart window Solar RRL 2 1800204

    Article  Google Scholar 

  50. Jiang S, Liu S and Feng W 2011 PVA hydrogel properties for biomedical application J. Mech. Behav. Biomed. 4 1228

    Article  CAS  Google Scholar 

  51. Suciu A N, Iwatsubo T, Matsuda M and Nishino T 2004 A study upon durability of the artificial knee joint with PVA hydrogel cartilage JSME Int. J. Series C 47 199

    Article  Google Scholar 

  52. Cao D, Xu C, Lu W, Qin C and Cheng S 2018 Sunlight-Driven Photo-Thermochromic Smart Windows Solar RRL 2 1700219

    Article  Google Scholar 

  53. Wang J, Gao C, Zhang Y and Wan Y 2010 Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial Mat. Sci. Eng. C-Mater. 30 214

    Article  Google Scholar 

  54. Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S, et al. 2004 Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea Mat. Sci. Eng. C-Mater. 24 729

    Article  Google Scholar 

  55. Hou Y, Chen C, Liu K, Tu Y, Zhang L and Li Y 2015 Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism RSC Adv. 5 24023

    Article  CAS  Google Scholar 

  56. Wang M, Xing X, Perepichka I F, Shi Y, Zhou D, Wu P and Meng H 2019 Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte Adv. Energy Mater. 9 1900433

    Article  Google Scholar 

  57. Zhou Y, Dong X, Mi Y, Fan F, Xu Q, Zhao H, et al. 2020 Hydrogel smart windows J. Mater. Chem. A 8 10007

    Article  CAS  Google Scholar 

  58. Kang S K, Ho D H, Lee C H, Lim H S and Cho J H 2020 Actively operable thermoresponsive smart windows for reducing energy consumption ACS Appl. Mater. Interfaces 12 33838

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Y, Cai Y F, Hu X and Long Y 2014 Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications J. Mater. Chem. A 2 13550

    Article  CAS  Google Scholar 

  60. Yang Y S, Zhou Y, Chiang F B Y and Long Y 2016 Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application RSC Adv. 6 61449

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Yuqin Feng and Ming Yang contributed equally to this work. We gratefully acknowledge the financial support from the Wuhan Textile University (Grant No: 017/195014, 017/212061J, 017/202127 and 017/194019021; Hubei Superior and Distinctive Discipline Group of “Mechatronics and Automobiles” (Grant No: No. XKQ2019009). We gratefully acknowledge the help of Dr. Longyi’s group in Nanyang Technological University with the progress of the video shooting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Yang or Dezheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 24267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yang, M., Zhang, Y. et al. Hybrid thermochromic hydrogels based on HPC/PVA for smart windows with enhanced solar modulation. J Chem Sci 134, 24 (2022). https://doi.org/10.1007/s12039-021-02024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-02024-y

Keywords

Navigation