Skip to main content
Log in

Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Synthesis of highly efficient functional electrocatalyst that favours the electrochemical oxidation of formic acid via CO-free dehydrogenation pathway is required for direct formic acid fuel cells. Traditional catalysts favour the dehydration pathway involving the generation of poisonous CO. Herein we demonstrate the superior electrocatalytic performance of Pt-Pd bimetallic nanoelectrocatalyst of ultralow Pt content and tuning the reaction pathway by controlling the Pt content. Bimetallic nanoparticles of Pt4Pd96, Pt7Pd93 and Pt47Pd53 compositions are synthesized by electrochemical co-deposition method in aqueous solution. The nanoparticles of ultralow Pt content, Pt4Pd96, favour the CO-free dehydrogenation pathway for formic acid oxidation with an onset potential of 0 V (SHE) whereas the Pt47Pd53 nanoparticles favour the dehydration pathway involving the formation of CO at high positive potential. The Pt content of the bimetallic nanoparticles actually controls the oxidation peak potential and catalytic activity. Significant negative shift (∼350 mV) in the oxidation peak potential and remarkable enhancement in the current density (2.6 times) are observed for Pt4Pd96 nanoparticles with respect to Pt47Pd53. The absence of three adjacent Pt and Pd atoms could be the reason for the suppression of CO pathway. The electrochemical impedance measurements indirectly support the CO-free pathway for the formic acid oxidation on Pt4Pd96 nanoparticles.

Electrochemical synthesis of Pt-Pd bimetallic nanoparticles of ultralow Pt content and tuning of reaction pathway for the electrochemical oxidation of formic acid are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cheng T T and Gyenge E L 2009 J. Appl. Electrochem. 39 1925

  2. Rice C, Ha S, Masel R I, Waszczuk P, Wieckowski A and Barnard T 2002 J. Power Sources 111 83

  3. Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S and Sung Y E 2006 J. Power Sources 163 71

  4. Liu H, Zhang J 2009 In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications (Weinheim: Wiley-VCH)

  5. Chen Y X, Heinen M, Jusys Z and Behm R J 2006 Angew. Chem. Int. Ed. 45 981

  6. Zhu Y, Khan Z and Masel R I 2005 J. Power Sources 139 15

  7. Zhou W J and Lee J Y 2007 Electrochem. Commun. 9 1725

  8. Liu Z, Hong L, Tham M P, Lim T H and Jiang H 2006 J. Power Sources 161 831

  9. Larsen R, Ha S, Zakzeski J and Masel R I 2006 J. Power Sources 157 78

  10. Iyyamperumal R, Zhang L, Henkelman G and Crooks R M 2013 J. Am. Chem. Soc. 135 5521

  11. Rhee C K, Kim B J, Ham C, Kim Y J, Song K and Kwon K 2009 Langmuir 25 7140

  12. Cui C H, Li H H, Cong H P, Yu S H and Tao F 2012 Chem. Commun. 48 12062

  13. Vidal-Iglesias F J, Solla-Gullón J, Herrero E, Aldaz A and Feliu J M 2010 Angew. Chem. Int. Ed. 49 6998

  14. Leiva E, Iwasita T, Herrero E and Feliu J M 1997 Langmuir 13 6287

  15. Vidal-Iglesias F J, Arán-Ais R M, Solla-Gullón J, Garnier E, Herrero E, Aldaz A and Feliu J M 2012 Phys. Chem. Chem. Phys. 14 10258

  16. Zhou W and Lee J Y 2008 J. Phys. Chem. C 112 3789

  17. Wang R, Liao S and Ji S 2008 J. Power Sources 180 205

  18. Lee H, Habas S E, Somorjai G A and Yang P 2008 J. Am. Chem. Soc. 130 5406

  19. Lan F, Wang D, Lu S, Zhang J, Liang D, Peng S, Liu Y and Xiang Y 2013 J. Mater. Chem. A 1 1548

  20. Chen G, Liao M, Yu B, Li Y, Wang D, You G, Zhong C J and Chen B H 2012 Int. J. Hydrogen Energ. 37 9959

  21. Corduneanu O, Diculescu V C, Chiorcea-Paquim A M and Oliveira-Brett A M 2008 J. Electroanal. Chem. 624 97

  22. Trasatti S and Petrii A 1991 Pure. Appl. Chem. 63 711

  23. Conrad H, Ertl G and Latta E E 1974 Surf. Sci. 41 435

  24. Wang Z B, Chu Y Y, Shao A, Zuo P J and Yin G P 2009 J. Power Sources 190 336

  25. Vidal-Iglesias F J, López-CuderoA, Solla-Gullón J and Feliu J M 2013 Angew.Chem. Int. Ed. 52 964

  26. Chen W and Chen S 2011 J. Mater. Chem. 21 9169

  27. Ji X, Lee K T, Holden R, Zhang L, Zhang J, Botton G A, Couillard M and Nazar L F 2010 Nature Chem 2 286

  28. Chakraborty D, Chorkendorff I and Johannessen T 2006 J. Power Sources 162 1010

  29. Danaee I, Jafarian M, Forouzandeh F, Gobal F and Mahjani M G 2008 J. Phys. Chem. B 112 15933

  30. Melnick R E and Palmore G T R 2001 J. Phys. Chem. B 105 1012

  31. Park S, Xie Y and Weaver M J 2002 Langmuir 18 5792

  32. Wang X M, Wang M E, Zhou D D and Xia Y Y 2011 Phys. Chem. Chem. Phys. 13 13594

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C RETNA RAJ.

Additional information

Supplementary Information

Voltammetric response of the nanoparticle-based electrode, chronoamperometric response illustrating the stability of the electrode towards formic acid oxidation, Nyquist plot for the oxidation of formic acid on Pt7Pd93, Pt and Pd nanoparticle-based electrodes, tables summarizing the previous literature on formic acid oxidation and impedance parameters are presented in the supplementary information available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.31 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHOSH, S., RAJ, C.R. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway. J Chem Sci 127, 949–957 (2015). https://doi.org/10.1007/s12039-015-0854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0854-6

Keywords

Navigation