Skip to main content
Log in

Investigating the interactions of the enantiomers of phenylglycine with nanopores of ZSM-5 zeolite

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this study, molecular dynamics simulation has been used to investigate the interactions of both chiral forms of phenylglycine amino acid (R- and S-isomers) with micropores of ZSM5-zeolite. Calculated results show that phenylglycine molecules interact with zeolite surface by electrostatic interaction of their positively charged ammonium group and negatively charged carboxylic group. This leads to the formation of two hetero hydrogen bonds between amino groups and oxygen of zeolite framework and also one hydrogen bond between the carboxylic groups and the zeolite surface. Further analyses show that S-isomers have stronger interactions with zeolite surface in comparison to R-isomers. So, movement, radius of gyration and angle of orientation of S-isomers inside nanopores are decreased, while R-isomers interact more strongly with each other. However, both chiral forms have diffusive behaviour along the pores with the self diffusion coefficient of about two orders of magnitude less than that in free water.

Molecular dynamics simulation has been used to investigate the interactions of both chiral forms of Phenylglycine amino-acid with micropores of ZSM5-zeolite. Results show that S-isomers have stronger interactions with zeolite surface in comparison to R-isomers, while R-isomers have the strong interaction with each other which cause their effective passage inside pores with higher diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lffler D, Rmbke J, Meller M and Ternes T A 2005 Environ. Sci. Technol. 39 5209

  2. Reemtsma T, Weiss S, Mueller J, Petrovic M, Gonzlez S, Barcelo D, Ventura F and Knepper T P 2006 Environ. Sci. Technol. 40 5451

  3. Loraine G A and Pettigrove M E 2006 Environ. Sci. Technol. 40 687

  4. Figueroa RA, Leonard A and MacKay A A 2004 Environ. Sci. Technol. 38 476

  5. Lienert J, Gdel K and Escher B I 2007, Environ. Sci. Technol. 41 4471

  6. Knapp CW, Dolfing J, Ehlert P A I and Graham D W 2010 Environ. Sci. Technol. 44 580

  7. Conn K E, Barber L B, Brown G K and Siegrist R L 2006 Environ. Sci. Technol. 40 7358

  8. Ternes T A, Meisenheimer M, McDowell D, Sacher F, Brauch H J, Haist-Gulde B, Preuss G, Wilme U and Zulei-Seibert N 2002a Environ. Sci. Technol. 36 3855

  9. Heberer T 2002 Hydrol. J. 266 175

  10. Daughton C G and Jones-Lepp L 2001 American Chemical Society, (Washington DC) Symposium Series p. 791

  11. Huber M M, Canonica S, Park G-Y and Gunten U 2003 Environ. Sci. Technol. 37 1016

  12. Ternes T A, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M and Teiser B 2003 Water Res. 37(8) 1976

  13. . Zhao XS, Ma Q and Lu GQ 1998 Energy Fuels 12 1051

  14. Anderson M A 2000 Environ. Sci. Technol. 34 725

  15. Tuan V A, Li S, Noble R D and Falconer J L 2003 Environ. Sci. Technol. 37 4007

  16. Hung H-W and Lin T-F 2006 Hazard. J. Mater. 135 210

  17. Krohn J E and Tsapatsis M 2005a Langmuir 21 8743

  18. Krohn J E and Tsapatsis M 2006b Langmuir 22 9350

  19. van Bekkum H, Flanigen E M, Jacobs P A and Jansen J C 2001 Introduction to zeolite science and practice, (2nd ed.) (Amsterdam: Elsevier)

  20. Tzvetkov G, Koller G, Zubavichus Y 2004 Langmuir 20 10551

  21. Meng M, Stievano L and Lambert J-F 2004 Langmuir 20 914

  22. Gray JJ 2004 Curr. Opin. Struct. Biol. 14 110

  23. Hartmann M 2005 Chem. Mater. 17 4577

  24. Aquino AJA, Tunega D and Gerzabek MH 2004 J. Phys. Chem. B 108 10120

  25. Rimola A, Tosoni S and Sodupe M 2006a ChemPhysChem. 7 157

  26. Rimola A, Sodupe M, Tosoni S 2006b Langmuir 22 6593

  27. Bezus AG, Kiselev AV, Lopatkin AA and Du PQJ 1978 J. Chem. Soc. Faraday Trans. 2 367

  28. Smit B and Siepmann J I J 1994 J. Phys. Chem. 98 8442

  29. Berendsen H J C, Postma J P M, von Gunsteren W F and Hermans J 1981 Intermolecular forces (Dordrecht: Reidel Publ)

  30. Gunsteren W F and Berendsen J C 1990 Angew Chem Int Ed Engl. 29 992

  31. de Leeuw S W and Perram J W 1979 Mol. Phys. 37 1313

  32. Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Mod. 7 306

  33. Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14(1) 33

  34. Munsch S, Hartmann M and Ernst S 2001 Chem. Commun. 19 1978

  35. Aikens MC and Gordon MS 2006 J. Am. Chem. Soc. 128 12835

  36. Malek K, Odijk T and Coppens M-O 2005 Nanotechnology 16 522

  37. Farhadian N, Malek K, Shariaty-Niassar M and Maghari A 2011 Chem. Lett. 40

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NAFISEH FARHADIAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FARHADIAN, N., MALEK, K., SHARIATY-NIASSAR, M. et al. Investigating the interactions of the enantiomers of phenylglycine with nanopores of ZSM-5 zeolite. J Chem Sci 126, 569–578 (2014). https://doi.org/10.1007/s12039-014-0610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0610-3

Keywords

Navigation