Skip to main content
Log in

Prognostic value and immunological characteristics of a novel autophagy-related signature in pancreatic cancer

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Autophagy affects the development, progression, and prognosis of various cancers including pancreatic cancer. To develop an autophagy-related prognostic model of pancreatic cancer, we systematically analyzed gene expression profile from The Cancer Genome Atlas and Genotype-Tissue Expression. Ten autophagy-relevant genes with potential prognostic values were identified, based on which a prognostic model was constructed. We divided patients into a high- and a low-risk group with this model. Time-dependent receiver operating characteristic and Kaplan–Meier curves were conducted to evaluate the accuracy of the model. The Area Under Curvevalues of this model at 12, 18, and 24 months were 0.76, 0.73, and 0.78, respectively. The model was further validated in two Gene Expression Omnibus datasets. Gene set enrichment analysis and Cibersort were applied to analyze immune infiltration patterns and immune checkpoint blockade (ICB) molecules. The expression of ICB molecules, such as PD-L1 and PD1, presented significant correlation with the risk score. In conclusion, the risk score model established herein has been proved to be robust for evaluating the prognosis of pancreatic cancer and facilitate to improve the efficacy of ICB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Amaravadi R, Kimmelman AC and White E 2016 Recent insights into the function of autophagy in cancer. Genes Dev. 30 1913–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, et al. 2000 Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25 25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashour AA, Gurbuz N, Alpay SN, Abdel-Aziz AA, Mansour AM, Huo L and Ozpolat B 2014 Elongation factor-2 kinase regulates TG2/β1 integrin/Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion. J. Cell Mol. Med. 18 2235–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran VP, Łuksza M, Zhao JN, et al. 2017 Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551 512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS and Gulley JL 2018 Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J. Immunother. Cancer 6 35

    Article  PubMed  PubMed Central  Google Scholar 

  • Castino GF, Cortese N, Capretti G, et al. 2016 Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5 e1085147

  • Considine B and Hurwitz ME 2019 Current status and future directions of immunotherapy in renal cell carcinoma. Curr. Oncol. Rep. 21 34

    Article  PubMed  Google Scholar 

  • Ding L, Han L, Li Y, Zhao J, He P and Zhang W 2014 Neurogenin 3-directed cre deletion of Tsc1 gene causes pancreatic acinar carcinoma. Neoplasia 16 909–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaks B, Moore MA and Flaks A 1981 Ultrastructural analysis of pancreatic carcinogenesis. IV. Pseudoductular transformation of acini in the hamster pancreas during N-nitroso-bis (2-hydroxypropyl)amine carcinogenesis. Carcinogenesis 2 1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Gatica D, Lahiri V and Klionsky DJ 2018 Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20 233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Jiang L, Luo S, Zhao X, Hu H, Zhao G and Tang W 2020 Development of an autophagy-related gene expression signature for prognosis prediction in prostate cancer patients. J. Transl. Med. 18 160

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang F, Chen W, Peng J, Li Y, Zhuang Y, Zhu Z, Shao C, Yang W, Yao H and Zhang S 2018 LncRNA PVT1 triggers Cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 Axis. Mol. Cancer 17 98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao Y, Li Y, Liu S, Chen Q and Liu Y 2019 ITGA3 serves as a diagnostic and prognostic biomarker for pancreatic cancer. Oncol. Targets Ther. 12 4141–4152

    Article  CAS  Google Scholar 

  • Kadaba R, Birke H, Wang J, et al. 2013 Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. J Pathol. 230 107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M and Goto S 2000 KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuta K, Masamune A, Watanabe T, Ariga H, Itoh H, Hamada S, Satoh K, Egawa S, Unno M and Shimosegawa T 2010 Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 403 380–384

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim YS, Kim DE, et al. 2013 BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 9 2126–2139

    Article  CAS  PubMed  Google Scholar 

  • Komatsubara KM and Carvajal RD 2017 Immunotherapy for the treatment of uveal melanoma: current status and emerging therapies. Curr. Oncol. Rep. 19 45

    Article  PubMed  CAS  Google Scholar 

  • Koustas E, Sarantis P, Kyriakopoulou G, Papavassiliou AG and Karamouzis MV 2019 The interplay of autophagy and tumor microenvironment in colorectal cancer-ways of enhancing immunotherapy action. Cancers 11 533

    Article  CAS  PubMed Central  Google Scholar 

  • Li FH, Xiang L, Ran L, Zhou S, Huang Z, Chen M and Yu WF 2019 BNIP1 inhibits cell proliferation, migration and invasion, and promotes apoptosis by mTOR in cervical cancer cells. Eur. Rev. Med. Pharmacol. Sci. 23 1397–1407

    PubMed  Google Scholar 

  • Liu Q, Liao Q and Zhao Y 2017 Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int. 17 68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SH, Hong Y, Markowiak S, et al. 2019 BIRC5 is a target for molecular imaging and detection of human pancreatic cancer. Cancer Lett. 457 10–19

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO and Green AR 2012 The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res. Treat. 132 545–553

    Article  CAS  PubMed  Google Scholar 

  • Mallela K and Kumar A 2021 Role of TSC1 in physiology and diseases. Mol. Cell Biochem. 476 2269–2282

    Article  CAS  PubMed  Google Scholar 

  • Mele L, Del VV, Liccardo D, et al. 2020 The role of autophagy in resistance to targeted therapies. Cancer Treat. Rev. 88 102043

  • Mizushima N and Komatsu M 2011 Autophagy: renovation of cells and tissues. Cell 147 728–741

    Article  CAS  PubMed  Google Scholar 

  • Neill T, Chen CG, Buraschi S and Iozzo RV 2020 Catabolic degradation of endothelial VEGFA via autophagy. J. Biol. Chem. 295 6064–6079

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA 2015 Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MF, Mortensen MB and Detlefsen S 2016 Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol. 22 2678–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oji Y, Tatsumi N, Fukuda M, et al. 2014 The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers. Int. J. Oncol. 44 1461–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth M, Metzger P, Gerum S, Mayerle J, Schneider G, Belka C, Schnurr M and Lauber K 2019 Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat. Oncol. 14 141

    Article  PubMed  PubMed Central  Google Scholar 

  • Papoff G, Presutti D, Lalli C, Bolasco G, Santini S, Manelfi C, Fustaino V, Alemà S and Ruberti G 2018 CASP4 gene silencing in epithelial cancer cells leads to impairment of cell migration, cell-matrix adhesion and tissue invasion. Sci. Rep. 8 17705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow MA, Callahan MK and Wolchok JD 2015 Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33 1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu N, Zhao G, Gao S, Cui Y, Xu Y, Lv Y, Nuerxiati A and Wu W 2018 Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent. Eur. J. Immunol. 43 123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulluri B, Kumar A, Shaheen M, Jeter J and Sundararajan S 2017 Tumor microenvironment changes leading to resistance of immune checkpoint inhibitors in metastatic melanoma and strategies to overcome resistance. Pharmacol. Res. 123 95–102

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Xu L, Yi M, Yu S, Wu K and Luo S 2019 Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18 155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM and Matrisian LM 2014 Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74 2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Rangwala R, Chang YC, Hu J, et al. 2014 Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10 1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawla P, Sunkara T and Gaduputi V 2019 Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10 10–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribas A and Wolchok JD 2018 Cancer immunotherapy using checkpoint blockade. Science 359 1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK 2015 limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43 e47

  • Schaaf MB, Houbaert D, Meçe O and Agostinis P 2019 Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ. 26 665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shchors K, Massaras A and Hanahan D 2015 Dual Targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 28 456–471

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F 2014 Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 187–192

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, et al. 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102 15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats JM, Muntasell A, Dienstmann R, Lopez-Bigas N and Gonzalez-Perez A 2018 A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin. Cancer Res. 24 3717–3728

    Article  CAS  PubMed  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM, et al. 2015 Proteomics. Tissue-based map of the human proteome. Science 347 1260419

  • Wang WQ, Liu L, Xu HX, Wu CT, Xiang JF, Xu J, Liu C, Long J, Ni QX and Yu XJ 2016 Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma. Br. J. Surg. 103 1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Venida A, Perera RM and Kimmelman AC 2020a Selective autophagy of MHC-I promotes immune evasion of pancreatic cancer. Autophagy 16 1524–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Venida A, Yano J, et al. 2020b Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581 100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Rajeshkumar NV, Wang X, et al. 2014 Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4 905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Herter-Sprie G, Zhang H, et al. 2018 Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8 276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang X, Contino G, et al. 2011 Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25 717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Imamura Y, Jenkins RW, et al. 2016 Autophagy inhibition dysregulates tbk1 signaling and promotes pancreatic inflammation. Cancer Immunol. Res. 4 520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, Wu M and Wainwright DA 2018 IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol. Immunol. 15 447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the HADB (http://autophagy.lu/clustering/index.html), UCSC Xena (http://xena.ucsc.edu/), GTEx (https://www.gtexportal.org/), TCGA (https://portal.gdc.cancer.gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/) and HPA (https://www.proteinatlas.org/) for sharing the large amount of data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. M. Zhi or S. R. Bu.

Additional information

Corresponding editor: Sagar Sengupta

Corresponding editor: Sagar Sengupta

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P.C., Bao, T.Y., Zhi, J.M. et al. Prognostic value and immunological characteristics of a novel autophagy-related signature in pancreatic cancer. J Biosci 46, 68 (2021). https://doi.org/10.1007/s12038-021-00189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00189-9

Keywords

Navigation