Skip to main content
Log in

When histones are under glucose starvation

  • Mini-Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Under nutritional stress, cells undergo metabolic rewiring that results in changes of various cellular processes that include gene transcription. This transcriptional regulation requires dynamic chromatin remodeling that involves histone post-translational modifications. There are several histone marks that may act as switches upon starvation for stress-response pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG and Berger SL 2010 Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329 1201–1205

    Article  CAS  Google Scholar 

  • Cantó C and Auwerx J 2010 AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol. Life Sci. 67 3407–3423

    Article  Google Scholar 

  • Clements A, Poux AN, Lo WS, Pillus L, Berger SL and Marmorstein R 2003 Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol. Cell. 12 461–473

    Article  CAS  Google Scholar 

  • Eissenberg JC and Shilatifard A 2010 Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339 240–249

    Article  CAS  Google Scholar 

  • Gongol B, Sari I, Bryant T, Rosete G and Marin T 2018 Ampk: An epigenetic landscape modulator. Int. J. Mol. Sci. 19 e3238

    Article  Google Scholar 

  • Ha J, Daniel S, Broyles SS and Kim KH 1994 Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 269 22162–22168

    Article  CAS  Google Scholar 

  • Hardie DG 2011 AMPK and autophagy get connected. EMBO J. 30 634–635

    Article  CAS  Google Scholar 

  • Herzig S and Shaw R 2018 AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19 121–135

    Article  CAS  Google Scholar 

  • Kniewel R, Murakami H, Liu Y, Ito M, Ohta K, Hollingsworth NM and Keeney S 2017 Histone H3 threonine 11 phosphorylation is catalyzed directly by the meiosis-specific kinase Mek1 and provides a molecular readout of Mek1 activity in vivo. Genetics 207 1313–1333

    Article  CAS  Google Scholar 

  • Li S, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL and Suganuma T 2015 Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell. 60 408–421

    Article  CAS  Google Scholar 

  • Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, Li W, Lyu J, Rao G and Zhang X 2017 Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell66 684–697

    Article  CAS  Google Scholar 

  • Li X Egervari G, Wang Y, Berger SL and Lu Z 2018 Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19 563–578

    Article  CAS  Google Scholar 

  • Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R and Berger SL 2001 Snf1–a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 93 1142–1146

    Article  Google Scholar 

  • Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N, Patnaik D, Higgins JM, Potier N, Scheidtmann KH, Buettner R and Schüle R 2008 Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell Biol. 10 53–60

    Article  CAS  Google Scholar 

  • Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M and Shaw RJ 2011 Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145 607–621

    Article  CAS  Google Scholar 

  • Oh S, Suganuma T, Gogol MM and Workman JL 2018 Histone H3 threonine 11 phosphorylation by Sch9 and CK2 regulates chronological lifespan by controlling the nutritional stress response. eLife 7 e36157

  • Schvartzman JM, Thompson CB and Finley LWS 2017 Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217 2247

    Article  Google Scholar 

  • Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S and Kundu TK 2010 Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J. Bio. Chem. 285 7143–7152

    Article  CAS  Google Scholar 

  • Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H and Nakanishi M 2008 Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132 221–232

    Article  CAS  Google Scholar 

  • Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR and Stevens RD 2013 Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339 211–214

    Article  CAS  Google Scholar 

  • Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, Kweon MN, Won KJ and Baek SH 2016 AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534 553–557

    Article  CAS  Google Scholar 

  • Tang G, Guo J, Zhu Y, Huang Z, Liu T, Cai J, Yu L and Wang Z 2018 Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int. J. Oncol. 52 1899–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Yu Q, Li J, Hu B, Zhao Q, Ma C, Huang W, Zhuo L, Fang H and Liao L 2017 O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat. Cell Biol. 19 833–843

    Article  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ and Moller DE 2001 Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108 1167–1174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L Workman.

Additional information

This article is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Oh, S., Abmayr, S.M. et al. When histones are under glucose starvation. J Biosci 45, 17 (2020). https://doi.org/10.1007/s12038-019-9971-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9971-6

Keywords

Navigation