Skip to main content
Log in

Tetrahymena dynamin-related protein 6 self-assembles independent of membrane association

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract:

Self-assembly on target membranes is one of the important properties of all dynamin family proteins. Drp6, a dynamin-related protein in Tetrahymena, controls nuclear remodelling and undergoes cycles of assembly/disassembly on the nuclear envelope. To elucidate the mechanism of Drp6 function, we have characterized its biochemical and biophysical properties using size exclusion chromatography, chemical cross-linking and electron microscopy. The results demonstrate that Drp6 readily forms high-molecular-weight self-assembled structures as determined by size exclusion chromatography and chemical cross-linking. Negative stain electron microscopy revealed that Drp6 assembles into rings and spirals at physiological ionic strength. We have also shown that the recombinant Drp6 expressed in bacteria is catalytically active and its GTPase activity is not enhanced by low salt. These results suggest that, in contrast to dynamins but similar to MxA, Drp6 self-assembles in the absence of membrane templates, and its GTPase activity is not affected by ionic strength of the buffer. We discuss the self-assembly structure of Drp6 and explain the basis for lack of membrane-stimulated GTPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Antonny B, Burd C, De Camilli P, et al. 2016 Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35 2270–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr JF and Hinshaw JE 1997 Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272 28030–28035

    Article  CAS  PubMed  Google Scholar 

  • Chan DC 2006 Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22 79–99

    Article  CAS  PubMed  Google Scholar 

  • Chang CR and Blackstone C 2010 Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201 34–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CR, Manlandro CM, Arnoult D, et al. 2010 A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J. Biol. Chem. 285 32494–32503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-J, Zhang P, Egelman EH and Hinshaw JE 2004 The stalk region of dynamin drives the constriction of dynamin tubes. Nat. Struct. Mol. Biol. 11 574–575

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Gaudin R and Kirchhausen T 2014 Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25 3595–3609

    Article  PubMed  PubMed Central  Google Scholar 

  • Faelber K, Held M, Gao S, et al. 2012 Structural insights into dynamin-mediated membrane fission. Structure 20 1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Faelber K, Posor Y, Gao S, et al. 2011 Crystal structure of nucleotide-free dynamin. Nature 477 556–560

    Article  CAS  PubMed  Google Scholar 

  • Ford MGJ, Jenni S and Nunnari J 2011 The crystal structure of dynamin. Nature 477 561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz S, Rapaport D, Klanner E, et al. 2001 Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J. Cell Biol. 152 683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, von der Malsburg A, Paeschke S, et al. 2010 Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465 502–506

    Article  CAS  PubMed  Google Scholar 

  • Haller O and Kochs G 2011 Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J. Interf. Cytokine Res. 31 79–87

    Article  CAS  Google Scholar 

  • Haller O, Stertz S and Kochs G 2007 The Mx GTPase family of interferon-induced antiviral proteins. Microbe. Infect. 9 1636–1643

    Article  CAS  Google Scholar 

  • Hermann GJ, Thatcher JW, Mills JP, et al. 1998 Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143 359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinshaw JE 2000 Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16 483–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinshaw JE and Schmid SL 1995 Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374 190–192

    Article  CAS  PubMed  Google Scholar 

  • Kar UP, Dey H and Rahaman A 2017 Regulation of dynamin family proteins by post-translational modifications. J. Biosci. 42 333–344

    Article  CAS  PubMed  Google Scholar 

  • Kenniston JA and Lemmon MA 2010 Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J. 29 3054–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochs G, Haener M, Aebi U and Haller O 2002 Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. https://doi.org/10.1074/jbc.M200244200

    Google Scholar 

  • Lin HC and Gilman AG 1996 Regulation of dynamin I GTPase activity by G protein subunits and phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 271 27979–27982

    Article  CAS  PubMed  Google Scholar 

  • Low HH, Sachse C, Amos LA and Löwe J 2009 Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139 1342–1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Macdonald PJ, Francy CA and Stepanyants N, et al. 2016 Distinct Splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J. Biol. Chem. 291 493–507

    Article  CAS  PubMed  Google Scholar 

  • Marks B, Stowell MH, Vallis Y, et al. 2001 GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410 231–235

    Article  CAS  PubMed  Google Scholar 

  • Mears JA, Lackner LL, Fang S, et al. 2011 Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18 20–26

    Article  CAS  PubMed  Google Scholar 

  • Meglei G and McQuibban GA 2009 The dynamin-related protein Mgm1p assembles into oligomers and hydrolyzes GTP to function in mitochondrial membrane fusion. Biochemistry 48 1774–1784

    Article  CAS  PubMed  Google Scholar 

  • Moss TJ, Andreazza C, Verma A, et al. 2011 Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc. Natl. Acad. Sci. USA 108 11133–11138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlberg AB 1997 Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16 6676–6683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praefcke GJ, Kloep S, Benscheid U, et al. 2004 Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J. Mol. Biol. 344 257–269

    Article  CAS  PubMed  Google Scholar 

  • Praefcke GJK and McMahon HT 2004 The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol. 5 133–147

    Article  CAS  PubMed  Google Scholar 

  • Prakash B, Praefcke GJK, Renault L, et al. 2000 Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403 567–571

    Article  CAS  PubMed  Google Scholar 

  • Rahaman A, Elde NC and Turkewitz AP 2008 A dynamin-related protein required for nuclear remodeling in Tetrahymena. Curr. Biol. 18 1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran R, Surka M, Chappie JS, et al. 2007 The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 26 559–566

    Article  CAS  PubMed  Google Scholar 

  • Richter MF, Schwemmle M, Herrmann C, et al. 1995 Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J. Biol. Chem. 270 13512–13517

    Article  CAS  PubMed  Google Scholar 

  • Sesaki H, Southard SM, Yaffe MP and Jensen RE 2003 Mgm1p, a dynamin-related {GTPase,} is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14 2342–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song BD, Yarar D and Schmid SL 2004 An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin- mediated endocytosis in vivo. Mol. Biol. Cell 15 2243–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweitzer SM and Hinshaw JE 1998 Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93 1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Tadato B, Heymann JAW, Song Z, et al. 2010 OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum. Mol. Genet. 19 2113–2122

    Article  Google Scholar 

  • Takei K, McPherson PS, Schmid SL and De Camilli P 1995 Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374 186–190

    Article  CAS  PubMed  Google Scholar 

  • Tuma PL and Collins CA 1994 Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem. 269 30842–30847

    CAS  PubMed  Google Scholar 

  • van der Bliek AM, Shen Q and Kawajiri S 2013 Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a011072

    Google Scholar 

  • Von Der Malsburg A, Abutbul-Ionita I, Haller O, et al. 2011 Stalk domain of the dynamin-like MxA GTPase protein mediates membrane binding and liposome tubulation via the unstructured L4 loop. J. Biol. Chem. 286 37858–37865

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnock DE, Hinshaw JE and Schmid SL 1996 Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem. 271 22310–22314

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Pitts KR and McNiven MA 2001 Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell 12 2894–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu PP, Patterson A, Stadler J, et al. 2004 Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J. Biol. Chem. 279 35 967–35974

    Google Scholar 

Download references

Acknowledgements

We thank Prof Aaron Turkewitz from University of Chicago for useful comments on the manuscript. We also thank the TEM facility of MCB, IISc, Bengaluru. This research was supported by funding to AR from the DBT Grant BT/PR14643/BRB/10/862/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdur Rahaman.

Additional information

Communicated by ULLAS KOLTHUR SEETHARAM.

Corresponding editor: Ullas Kolthur Seetharam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, U.P., Dey, H. & Rahaman, A. Tetrahymena dynamin-related protein 6 self-assembles independent of membrane association. J Biosci 43, 139–148 (2018). https://doi.org/10.1007/s12038-017-9726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9726-1

Keywords

Navigation