Skip to main content

Advertisement

Log in

Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Horizontal Gene Transfer (HGT) events, initially thought to be rare in Mycobacterium tuberculosis, have recently been shown to be involved in the acquisition of virulence operons in M. tuberculosis. We have developed a new partitioning framework based HGT prediction algorithm, called Grid3M, and applied the same for the prediction of HGTs in Mycobacteria. Validation and testing using simulated and real microbial genomes indicated better performance of Grid3M as compared with other widely used HGT prediction methods. Specific analysis of the genes belonging to dormancy/reactivation regulons across 14 mycobacterial genomes indicated that horizontal acquisition is specifically restricted to important accessory proteins. The results also revealed Burkholderia species to be a probable source of HGT genes belonging to these regulons. The current study provides a basis for similar analyses investigating the functional/evolutionary aspects of HGT genes in other pathogens. A database of Grid3M predicted HGTs in completely sequenced genomes is available at https://metagenomics.atc.tcs.com/Grid3M/ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdallah AM, Gey van Pittius NC, Champion PAD, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, Appelmelk BJ and Bitter W 2007 Type VII secretion--mycobacteria show the way. Nat. Rev. Microbiol. 5 883–891

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ 1990 Basic local alignment search tool. J. Mol. Biol. 215 403–410

    Article  CAS  PubMed  Google Scholar 

  • Azad RK and Lawrence JG 2005 Use of artificial genomes in assessing methods for atypical gene detection. PLoS Comput. Biol. 1, e56.c

    Article  Google Scholar 

  • Bagchi G, Chauhan S, Sharma D and Tyagi JS 2005 Transcription and autoregulation of the Rv3134 c-devR-devS operon of Mycobacterium tuberculosis. Microbiology. 151 4045–4053

    Article  CAS  PubMed  Google Scholar 

  • Becq J, Gutierrez MC, Rosas-Magallanes V, Rauzier J, Gicquel B, Neyrolles O and Deschavanne P 2007 Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Mol. Biol. Evol. 24 1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Becq J, Churlaud C and Deschavanne P 2011 A benchmark of parametric methods for horizontal transfers detection. PLoS One 5 e9989

    Article  Google Scholar 

  • Braibant M, Gilot P and Content J 2000 The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24 449–467

    Article  CAS  PubMed  Google Scholar 

  • Comstock GW 1982 Epidemiology of tuberculosis. Am. Rev. Respir. Dis. 125 8–15

    CAS  PubMed  Google Scholar 

  • Das C, Ghosh TS and Mande SS 2011 Computational analysis of the ESX-1 region of Mycobacterium tuberculosis: insights into the mechanism of type VII secretion system. PLoS One. 6, e2798

    Google Scholar 

  • Doolittle WF 1999 Lateral genomics. Trends Cell Biol. 9 M5–8

    Article  CAS  PubMed  Google Scholar 

  • Drumm JE, Mi K, Bilder P, Sun M, Lim J, et al. 2009 Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-binding: requirement for establishing chronic persistent infection. PLoS Pathog. 5 e1000460

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta C and Pan A 2002 Horizontal gene transfer and bacterial diversity. J. Biosci. 27 27–33

    Article  PubMed  Google Scholar 

  • Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, et al. 2013 The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499 178–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y-H 2005 Interaction between Burkholderia pseudomallei and the host immune response: sleeping with the enemy? J. Infect. Dis. 192 1845–1850

    Article  CAS  PubMed  Google Scholar 

  • Hegde SR, Rajasingh H, Das C, Mande SS and Mande SC 2012 Understanding communication signals during mycobacterial latency through predicted genome-wide protein interactions and boolean modeling. PLoS One 7 e33893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsella RJ, Fitzpatrick DA, Creevey CJ and McInerney JO 2003 Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc. Natl. Acad. Sci. USA 100 1032-0–1032-5

  • Lawrence JG and Ochman H 1998 Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95 9413–9417

  • Lewis K 2010 Persister cells. Annu. Rev. Microbiol. 64 357–372

    Article  CAS  PubMed  Google Scholar 

  • Lobo LJ and Noone PG 2014 Respiratory infections in patients with cystic fibrosis undergoing lung transplantation. Lancet Respir. Med. 2 73–82

    Article  PubMed  Google Scholar 

  • Manabe YC and Bishai WR 2000 Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat. Med. 6 1327–1329

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG and Groisman EA 2000 Lateral gene transfer and the nature of bacterial innovation. Nature. 405 299–304

    Article  CAS  PubMed  Google Scholar 

  • Rajan I, Aravamuthan S and Mande SS 2007 Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics 23 2672–2677

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Guimarães ML and Pessolani MCV 2007 Comparative genomics of mycobacterial proteases. Microb. Pathog. 43 173–178

    Article  PubMed  Google Scholar 

  • Rosas-Magallanes V, Deschavanne P, Quintana-Murci L, Brosch R, Gicquel B and Neyrolles O 2006 Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Mol. Biol. Evol. 23 1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Sherrid AM, Rustad TR, Cangelosi GA and Sherman DR 2010 Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis. PLoS One. 5, e11622

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetty AK, Boloor R, Sharma V and Bhat GHK 2010 Melioidosis and pulmonary tuberculosis co-infection in a diabetic. Ann Thorac Med. 5 113–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava S, Reddy CV and Mande SS 2010 INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J. Biosci. 35 351–364

    Article  CAS  PubMed  Google Scholar 

  • Syvanen M 1994 Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet. 28 237–261

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer N, Wessler S and Backert S 2011 Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 278 1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrens J, Dawkins P, Conway S and Moya E 1998 Non-tuberculous mycobacteria in cystic fibrosis. Thorax. 53 182–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsirigos A and Rigoutsos I 2005 A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 33 922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Pittius NCG, Sampson SL, Lee H, Kim Y, van Helden PD and Warren RM 2006 Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6 95

    Article  Google Scholar 

  • Vernikos GS and Parkhill J 2006 Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics. 22 2196–2203

    Article  CAS  PubMed  Google Scholar 

  • Wood TK, Knabel SJ and Kwan BW 2013 Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79 7116–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr RK Azad and Dr JG Lawrence for providing artificial genome sequences for our validation studies. We also thank Mr Purnachander Gajjalla for his help in creating the simulated genomes. VM is also a Junior Research Fellow of the Department of Chemical Engineering, Indian Institute of Technology (IIT), Bombay, and would like to acknowledge Department of Chemical Engineering, IIT Bombay, for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila S Mande.

Additional information

Corresponding editor: SEYED E HASNAIN

[Mehra V, Ghosh TS and Mande SS 2016 Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework. J. Biosci.]

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, V., Ghosh, T.S. & Mande, S.S. Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework. J Biosci 41, 475–485 (2016). https://doi.org/10.1007/s12038-016-9622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9622-0

Keywords

Navigation