Skip to main content
Log in

Molecular handedness of life: significance of RNA aminoacylation

  • Mini-review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Blackmond D G 2004 Asymmetric autocatalysis and its implications for the origin of homochirality; Proc. Natl. Acad. Sci. USA 101 5732–5736

    Article  CAS  PubMed  Google Scholar 

  • Bolli M, Micura R and Eschenmoser A 1997 Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality); Chem. Biol. 4 309–320

    Article  CAS  PubMed  Google Scholar 

  • Bonner W A 1996 The quest for chirality; in Physical origin of homochirality in life (ed.) D B Cline (New York: American Insititute of Physics) vol. 379 pp 17–49

    Google Scholar 

  • Bürgi H B, Dunitz J D, Lehn J M and Wipff G 1974 Stereochemistry of reaction paths at carbonyl centre; Tetrahedron 30 1563–1572

    Article  Google Scholar 

  • Chyba C F and Sagan C 1992 Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life; Nature (London) 355 125–132

    Article  CAS  Google Scholar 

  • Chyba C F, Thomas P J, Brookshaw L and Sagan C 1990 Cometary delivery of organic molecules to the early Earth; Science 249 366–373

    Article  CAS  PubMed  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J and Moras D 1990 Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs; Nature (London) 347 203–206

    Article  CAS  Google Scholar 

  • Gilbert W 1986 The RNA world; Nature (London) 319 618

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N and Altman S 1983 The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme; Cell 35 849–857

    Article  CAS  PubMed  Google Scholar 

  • Hegstrom R A 1987 Parity violation and symmetry breaking of a racemic mixture; Biosystems 20 49–56

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M and Soai K 2009 Asymmetric autocatalysis triggered by carbon isotope (13C/12C) chirality; Science 324 492–495

    Article  CAS  PubMed  Google Scholar 

  • Kim S H, Suddath F L, Quigley G J, McPherson A, Sussman J L, Wang A H, Seeman N C and Rich A 1974 Three-dimensional tertiary structure of yeast phenylalanine transfer RNA; Science 185 435–440

    Article  CAS  PubMed  Google Scholar 

  • Kruger K, Grabowski P J, Zaug A J, Sands J, Gottschling D E and Cech T R 1982 Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena; Cell 31 147–157

    Article  CAS  PubMed  Google Scholar 

  • Lohrmann R, Bridson P K and Orgel L E 1980 Efficient metal-ion catalyzed template-directed oligonucleotide synthesis; Science 208 1464–1465

    Article  CAS  PubMed  Google Scholar 

  • Oró J 1961 Comets and the formation of biochemical compounds on the primitive Earth; Nature (London) 190 389–390

    Article  Google Scholar 

  • Paecht-Horowitz M and Katchalsky A 1973 Synthesis of amino acyl-adenylates under prebiotic conditions; J. Mol. Evol. 2 91–98

    Article  CAS  PubMed  Google Scholar 

  • Robertus J D, Ladner J E, Finch J T, Rhodes D, Brown R S, Clark B F and Klug A 1974 Structure of yeast phenylalanine tRNA at 3 solution; Nature (London) 250 546–551

    Article  CAS  Google Scholar 

  • Schimmel P 1987 Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs; Annu. Rev. Biochem. 56 125–158

    Article  CAS  PubMed  Google Scholar 

  • Schimmel P, Giegé R, Moras D and Yokoyama S 1993 An operational RNA code for amino acids and possible relationship to genetic code; Proc. Natl. Acad. Sci. USA 90 8763–8768

    Article  CAS  PubMed  Google Scholar 

  • Schimmel P and Ribas de Pouplana L 1995 Transfer RNA: from minihelix to genetic code; Cell 81 983–986

    Article  CAS  PubMed  Google Scholar 

  • Soai K, Shibata T, Morioka H and Choji K 1995 Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule; Nature (London) 378 767–768

    Article  CAS  Google Scholar 

  • Tamura K 2008 Origin of amino acid homochirality: relationship with the RNA world and origin of tRNA aminoacylation; Biosystems 92 91–98

    Article  CAS  PubMed  Google Scholar 

  • Tamura K and Schimmel P 2004 Chiral-selective aminoacylation of an RNA minihelix; Science 305 1253

    Article  CAS  PubMed  Google Scholar 

  • Tamura K and Schimmel P R 2006 Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression; Proc. Natl. Acad. Sci. USA 103 13750–13752

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, K. Molecular handedness of life: significance of RNA aminoacylation. J Biosci 34, 991–994 (2009). https://doi.org/10.1007/s12038-009-0113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0113-4

Keywords

Navigation