Skip to main content
Log in

Cystatin C Attenuates Perihematomal Secondary Brain Injury by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Secondary brain injury (SBI) is a noticeable contributor to the high mortality and morbidity rates associated with intracerebral hemorrhage (ICH), and effective treatment options remain limited. Cystatin C (CysC) emerges as a novel candidate for SBI intervention. The therapeutic effects and underlying mechanisms of CysC in mitigating SBI following ICH were explored in the current research. An in vivo ICH rat model was established by injecting autologous blood into the right caudate nucleus. Western blotting (WB) was utilized to assess the levels of CysC, cathepsin B (CTSB), and the NLRP3 inflammasome. Subsequently, the ICH rat model was treated with exogenous CysC supplementation or CysC knockdown plasmids. Various parameters, including Evans blue (EB) extravasation, brain water content, and neurological function in rats, were examined. RT-qPCR and WB were employed to determine the expression levels of CTSB and the NLRP3 inflammasome. The co-expression of CTSB, CysC, and NLRP3 inflammasome with GFAP, NeuN, and Iba1 was assessed through double-labeled immunofluorescence. The interaction between CysC and CTSB was investigated using double-labeled immunofluorescence and co-immunoprecipitation. The findings revealed an elevation of CysC expression level, particularly at 24 h after ICH. Exogenous CysC supplementation alleviated severe brain edema, neurological deficit scores, and EB extravasation induced by ICH. Conversely, CysC knockdown produced opposite effects. The expression levels of CTSB and the NLRP3 inflammasome were significantly risen following ICH, and exogenous CysC supplement attenuated their expression levels. Double-labeled immunofluorescence illustrated that CysC, CTSB, and the NLRP3 inflammasome were predominantly expressed in microglial cells, and the interaction between CysC and CTSB was evidenced. CysC exhibited potential in ameliorating SBI following ICH via effectively suppressing the activation of the NLRP3 inflammasome mediated by CTSB specifically in microglial cells. These findings underscore the prospective therapeutic efficacy of CysC in the treatment of ICH-induced complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Campbell BCV, Khatri P (2020) Stroke. Lancet 396(10244):129–142

    Article  PubMed  Google Scholar 

  2. Ma Q, Li R, Wang L et al (2021) Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the global burden of disease study 2019. Lancet Public Health 6(12):e897–e906

    Article  PubMed  PubMed Central  Google Scholar 

  3. Magid-Bernstein J, Girard R, Polster S et al (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130(8):1204–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belur PK, Chang JJ, He S et al (2013) Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurg Focus 34(5):E9

    Article  PubMed  Google Scholar 

  5. Zhu H, Wang Z, Yu J et al (2019) Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 178:101610

    Article  CAS  PubMed  Google Scholar 

  6. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021 (10):795-820

  7. Shao Z, Tu S, Shao A (2019) Pathophysiological Mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol 19(10):1079

    Article  Google Scholar 

  8. Li X, Gao X, Zhang W et al (2022) Microglial replacement in the aged brain restricts neuroinflammation following intracerebral hemorrhage. Cell Death Dis 13(1):3

    Article  CAS  Google Scholar 

  9. Feng X, Zhan F, Luo D et al (2021) LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun 98:283–298

    Article  CAS  PubMed  Google Scholar 

  10. Luo Y, Reis C, Chen S (2019) NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: a review. Curr Neuropharmacol 17(7):582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao L, Zheng H, Li J et al (2020) Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol Neurobiol 57(12):5130–5149

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Wang J, Ruan C et al (2022) Co-exposure of chronic stress and alumina nanoparticles aggravates hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway. J Hazard Mater 15(436):129093

    Article  Google Scholar 

  13. Kim JK, Jung HJ, Hyun M et al (2023) Resistance of hypervirulent Klebsiella pneumoniae to cathepsin B-mediated pyroptosis in murine macrophages. Front Immunol 29(14):1207121

    Article  Google Scholar 

  14. Bernstein HG, Kirschke H, Wiederanders B et al (1996) The possible place of cathepsins and cystatins in the puzzle of Alzheimer disease: a review. Mol Chem Neuropathol 27(3):225–247

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Zhang J, Zhang C et al (2020) The role of cystatin C as a proteasome inhibitor in multiple myeloma. Hematology 25(1):457–463

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-González R, Sahoo S, Gauthier SA et al (2019) Neuroprotection mediated by cystatin C-loaded extracellular vesicles. Sci Rep 9(1):11104

    Article  PubMed  PubMed Central  Google Scholar 

  17. Howie AJ, Burnett D, Crocker J (1985) The distribution of cathepsin B in human tissues. J Pathol 145(4):307–314

    Article  CAS  PubMed  Google Scholar 

  18. Hook V, Yoon M, Mosier C et al (2020) Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta Proteins Proteom 1868(8):140428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grubb A (1992) Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 38(Suppl 1):S20–S27

    CAS  PubMed  Google Scholar 

  20. Yang B, Xu J, Chang L et al (2020) Cystatin C improves blood-brain barrier integrity after ischemic brain injury in mice. J Neurochem 153(3):413–425

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Li J, Wang Z et al (2014) Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol 49(2):1043–1054

    Article  CAS  PubMed  Google Scholar 

  22. Wu G, Wang L, Hong Z et al (2011) Effects of minimally invasive procedures for removal of intracranial hematoma on matrix metalloproteinase expression and blood-brain barrier permeability in perihematomal brain tissues. Neurol Res 33(3):300–306

    Article  PubMed  Google Scholar 

  23. Jiao Y, Ren S, Wang L et al (2023) PPARγ/RAD21 alleviates peripheral secondary brain injury in rat cerebral hemorrhage model through promoting M2 polarization of microglial cells. Int Immunopharmacol 114:10957

    Article  Google Scholar 

  24. Yang B, Zhu J, Miao Z et al (2015) Cystatin C is an independent risk factor and therapeutic target for acute ischemic stroke. Neurotox Res 28(1):1–7

    Article  PubMed  Google Scholar 

  25. Gan H, Zhang L, Chen H et al (2021) The pivotal role of the NLRC4 inflammasome in neuroinflammation after intracerebral hemorrhage in rats. Exp Mol Med 53(11):1807–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu G, Sheng F, Wang L et al (2012) The pathophysiological time window study of performing minimally invasive procedures for the intracerebral hematoma evacuation in rabbit. Brain Res 17(1465):57–65

    Article  Google Scholar 

  27. Shi X, Bai H, Wang J et al (2021) Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 17(12):667511

    Article  Google Scholar 

  28. Chen Y, Chen S, Chang J et al (2021) Perihematomal edema after intracerebral hemorrhage: an update on pathogenesis, risk factors, and therapeutic advances. Front Immunol 19(12):740632

    Article  Google Scholar 

  29. Shao L, Chen S, Ma L (2022) Secondary brain injury by oxidative stress after cerebral hemorrhage: recent advances. Front Cell Neurosci 23(16):853589. https://doi.org/10.3389/fncel.2022.853589

    Article  CAS  Google Scholar 

  30. Kaur G, Gauthier SA, Perez-Gonzalez R et al (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amin F, Khan MS, Bano B (2020) Mammalian cystatin and protagonists in brain diseases. J Biomol Struct Dyn 38(7):2171–2196

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Shen F, Zhang H et al (2023) Expression and role of cystatin C in hyperthermia-induced brain injury in rats. Math Biosci Eng 20(2):2716–2731

    Article  PubMed  Google Scholar 

  33. Zhou Y, Dong W, Wang L et al (2023) Lower serum cystatin C level predicts poor functional outcome in patients with hypertensive intracerebral hemorrhage independent of renal function. J Clin Hypertens (Greenwich) 25(1):86–94

    Article  CAS  PubMed  Google Scholar 

  34. Yao D, Li S, Jing J et al (2022) Association of serum cystatin C with cerebral small vessel disease in community-based population. Stroke 53(10):3123–3132

    Article  CAS  PubMed  Google Scholar 

  35. Mathews PM, Levy E (2016) Cystatin C in aging and in Alzheimer’s disease. Ageing Res Rev 32:38–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao B, Luo M, Li J et al (2022) Cerebrospinal fluid cystatin C levels in patients with anti-NMDAR encephalitis and other neurological diseases. J Neuroimmunol 15(369):577900

    Article  Google Scholar 

  37. Fang Z, Deng J, Wu Z et al (2017) Cystatin C is a crucial endogenous protective determinant against stroke. Stroke 48(2):436–444

    Article  CAS  PubMed  Google Scholar 

  38. Martinez-Vargas M, Soto-Nuñez M, Tabla-Ramon E et al (2014) Cystatin C has a dual role in post-traumatic brain injury recovery. Int J Mol Sci 15(4):5807–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagai A, Ryu JK, Terashima M et al (2005) Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res 1066(1–2):120–128

    Article  CAS  PubMed  Google Scholar 

  40. Olsson T, Nygren J, Håkansson K et al (2004) Gene deletion of cystatin C aggravates brain damage following focal ischemia but mitigates the neuronal injury after global ischemia in the mouse. Neuroscience 128(1):65–71

    Article  CAS  PubMed  Google Scholar 

  41. Tizon B, Sahoo S, Yu H et al (2010) Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. PLoS ONE 5(3):e9819

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xue M, Yong VW (2020) Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 19(12):1023–1032

    Article  CAS  PubMed  Google Scholar 

  43. Gu L, Sun M, Li R et al (2022) Microglial pyroptosis: therapeutic target in secondary brain injury following intracerebral hemorrhage. Front Cell Neurosci 9(16):971469

    Article  Google Scholar 

  44. Fu J, Wu H (2023) Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol 26(41):301–316

    Article  Google Scholar 

  45. Zhang J, Liu X, Wan C et al (2020) NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption. J Clin Periodontol 47(4):451–460

    Article  CAS  PubMed  Google Scholar 

  46. Song D, Yeh CT, Wang J et al (2022) Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol. 5(13):989503

    Article  Google Scholar 

  47. Xiao L, Wang M, Shi Y et al (2023) Secondary white matter injury mediated by neuroinflammation after intracerebral hemorrhage and promising therapeutic strategies of targeting the NLRP3 inflammasome. Curr Neuropharmacol 21(3):669–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng Y, Chen B, Xie W et al (2020) Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 79:106180

    Article  CAS  PubMed  Google Scholar 

  49. Fu K, Xu W, Lenahan C et al (2023) Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 16(16):1036313

    Article  PubMed  PubMed Central  Google Scholar 

  50. Campden RI, Zhang Y (2019) The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch Biochem Biophys 30(670):32–42

    Article  Google Scholar 

  51. Liu C, Yao Q, Hu T et al (2022) Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis. Mol Ther Nucleic Acids 23(30):198–207

    Article  Google Scholar 

  52. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu C, Tang J, Liu S et al (2022) Cathepsin B/NLRP3/GSDMD axis-mediated macrophage pyroptosis induces inflammation and fibrosis in systemic sclerosis. J Dermatol Sci 108(3):127–137

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Huang H, He W et al (2021) Association between serum NLRP3 and malignant brain edema in patients with acute ischemic stroke. BMC Neurol 21(1):341

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sun B, Zhou Y, Halabisky B et al (2008) Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron 60(2):247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hook G, Reinheckel T, Ni J et al (2022) Cathepsin B gene knockout improves behavioral deficits and reduces pathology in models of neurologic disorders. Pharmacol Rev 74(3):600–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang D, Han Y, Zhang J et al (2011) Improvement in recovery after experimental intracerebral hemorrhage using a selective cathepsin B and L inhibitor. J Neurosurg 114(4):1110–1116

    Article  PubMed  Google Scholar 

  58. Biasizzo M, Trstenjak-Prebanda M, Dolinar K et al (2021) Cystatin C deficiency increases LPS-induced sepsis and NLRP3 Inflammasome activation in mice. Cells 10(8):2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all those who helped us during the writing of this manuscript. Thanks to all the peer reviewers for their opinions and suggestions.

Funding

This work was supported by The Cultivation Program of the Natural Science Foundation of China (gyfynsfc [gyfynsfc2022]-1, the Cultivation Program of the Natural Science Foundation of China, gyfynsfc[2023]-30, and the Science and Technology Foundation of Guizhou Provincial Health Committee (grant no. gzwkj2023-263).

Author information

Authors and Affiliations

Authors

Contributions

Yongfang Zhou: experimental procedures and manuscript preparation. Wentao Dong: experimental procedures. Likun Wang: experimental procedures. Siying Ren: experimental procedures. Weiqing Wei: experimental procedures. Guofeng Wu: study design and manuscript preparation.

Corresponding author

Correspondence to Guofeng Wu.

Ethics declarations

Ethics Approval

Guizhou Medical University’s Institutional Animal Conservation and Utilization Committee reviewed the animal study and approved it.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Dong, W., Wang, L. et al. Cystatin C Attenuates Perihematomal Secondary Brain Injury by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04195-4

Keywords

Navigation