Skip to main content

Advertisement

Log in

Ultra-Low-Dose UV-C Photo-stimulation Promotes Neural Stem Cells Differentiation via Presenilin 1 Mediated Notch and β-Catenin Activation

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 μW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of β-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.

Graphical Abstract

Ultra-low-dose UV-C photo-stimulation promoted the differentiation of neural stem cells (NSCs) through Presenilin 1 mediated β-catenin and Notch 1 activations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

bFGF :

Basic fibroblast growth factor

cDNA :

Complementary DNA

DAPI :

4′,6-Diamidino-2-phenylindole

DMEM/F12 :

Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham

DNA :

Deoxyribonucleic acid

ECL :

Enhanced chemiluminescence

EGF :

Epidermal growth factor

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

GFAP :

Glial fibrillary acidic protein

HES1 :

Hairy and enhancer of split-1

MAP2 :

Microtubule-associated protein 2

MMLV :

Moloney Murine Leukemia Virus Reverse Transcriptase

mRNA :

Messenger ribonucleic acid

ND1 :

Differentiation 1, NeuroD1

NES :

Coding gene of Nestin

NICD :

Notch Intracellular Domain

NSCs :

Neural stem cells

PBS :

Phosphate-buffered saline

PCR :

Polymerase chain reaction

PDL :

Poly-D-lysine

PS1 :

Presenilin 1

PFA :

Paraformaldehyde

UV :

Ultraviolet

UV-A :

Ultraviolet-A

UV-C :

Ultraviolet-C

References

  1. de Tommaso M et al (2007) Effects of levetiracetam vs topiramate and placebo on visually evoked phase synchronization changes of alpha rhythm in migraine. Clin Neurophysiol 118:2297–2304. https://doi.org/10.1016/j.clinph.2007.06.060

    Article  CAS  PubMed  Google Scholar 

  2. LaLumiere RT (2011) A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 4:1–6. https://doi.org/10.1016/j.brs.2010.09.009

    Article  PubMed  Google Scholar 

  3. Saadati M, Akhavan O, Fazli H, Nemati S, Baharvand H (2023) Controlled differentiation of human neural progenitor cells on molybdenum disulfide/graphene oxide heterojunction scaffolds by photostimulation. ACS Appl Mater Interfaces 15:3713–3730. https://doi.org/10.1021/acsami.2c15431

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C et al (2019) Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biol 17:95. https://doi.org/10.1186/s12915-019-0717-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen MH, Singh RK (2022) Effective UV wavelength range for increasing aflatoxins reduction and decreasing oil deterioration in contaminated peanuts. Food Res Int 154:111016. https://doi.org/10.1016/j.foodres.2022.111016

    Article  CAS  PubMed  Google Scholar 

  6. Omur AD (2022) Evaluation of the effects of photostimulation on freeze-thawed bull sperm cells in terms of reproductive potential. Pol J Vet Sci 25:249–259. https://doi.org/10.24425/pjvs.2022.141809

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Dorlhiac G, Landry MP, Streets A (2022) Phototoxic effects of nonlinear optical microscopy on cell cycle, oxidative states, and gene expression. Sci Rep 12:18796. https://doi.org/10.1038/s41598-022-23054-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roy M, Corti A, Dorocka-Bobkowska B, Pompella A (2022) Positive effects of uv-photofunctionalization of titanium oxide surfaces on the survival and differentiation of osteogenic precursor cells-an in vitro study. J Funct Biomater 13(4):265. https://doi.org/10.3390/jfb13040265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moon H et al (2017) Melanocyte stem cell activation and translocation initiate cutaneous melanoma in response to UV exposure. Cell Stem Cell 21:665-678 e666. https://doi.org/10.1016/j.stem.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandri A, Tessari A, Giannetti D, Cetti A, Lleo MM, Boschi F (2023) UV-A radiation: Safe human exposure and antibacterial activity. Int J Mol Sci 24(9):8331. https://doi.org/10.3390/ijms24098331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai Y et al (2022) Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg. Front Plant Sci 13:926197. https://doi.org/10.3389/fpls.2022.926197

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu Q et al (2023) Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3beta/beta-catenin activation. Cell Biosci 13:4. https://doi.org/10.1186/s13578-023-00954-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sigloch V, Spitz D, Driever W (2023) A network of Notch-dependent and -independent her genes controls neural stem and progenitor cells in the zebrafish thalamic proliferation zone. Development (Cambridge, England) 150(7):dev201301. https://doi.org/10.1242/dev.201301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Q et al (2018) GRP78 promotes neural stem cell antiapoptosis and survival in response to oxygen-glucose deprivation (OGD)/reoxygenation through pi3k/akt, erk1/2, and nf-kappab/p65 pathways. Oxid Med Cell Longev 2018:3541807. https://doi.org/10.1155/2018/3541807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Q et al (2016) Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-kappaB/p65 activation. Oxid Med Cell Longev 2016:3507290. https://doi.org/10.1155/2016/3507290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Q et al (2014) Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation. Neurosci Lett 559:1–6. https://doi.org/10.1016/j.neulet.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  18. Bonds JA et al (2015) Presenilin-1 dependent neurogenesis regulates hippocampal learning and memory. PLoS One 10:e0131266. https://doi.org/10.1371/journal.pone.0131266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Veeraraghavalu K, Choi SH, Zhang X, Sisodia SS (2010) Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling. J Neurosci 30:6903–6915. https://doi.org/10.1523/JNEUROSCI.0527-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones DL, Baxter BK (2017) DNA repair and photoprotection: mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic archaea. Front Microbiol 8:1882. https://doi.org/10.3389/fmicb.2017.01882

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fuentes-Leon F et al (2024) Genotoxicity of ultraviolet light and sunlight in the bacterium Caulobacter crescentus: Wavelength-dependence. Mutat Res Genet Toxicol Environ Mutagen 894:503727. https://doi.org/10.1016/j.mrgentox.2024.503727

    Article  CAS  PubMed  Google Scholar 

  22. Patwardhan J, Bhatt P (2016) Flavonoids derived from abelmoschus esculentus attenuates uv-b induced cell damage in human dermal fibroblasts through Nrf2-ARE pathway. Pharmacogn Mag 12:S129-138. https://doi.org/10.4103/0973-1296.182175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohania D et al (2017) Ultraviolet radiations: skin defense-damage mechanism. Adv Exp Med Biol 996:71–87. https://doi.org/10.1007/978-3-319-56017-5_7

    Article  CAS  PubMed  Google Scholar 

  24. Jantaro S, Baebprasert W, Piyamawadee C, Sodsuay O, Incharoensakdi A (2014) Exogenous spermidine alleviates UV-induced growth inhibition of Synechocystis sp. PCC 6803 via reduction of hydrogen peroxide and malonaldehyde levels. Appl Biochem Biotechnol 173:1145–1156. https://doi.org/10.1007/s12010-014-0887-1

    Article  CAS  PubMed  Google Scholar 

  25. Bagheri-Mohammadi S (2022) Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci 132:1165–1177. https://doi.org/10.1080/00207454.2020.1865953

    Article  CAS  PubMed  Google Scholar 

  26. Li Q et al (2021) RYBP modulates embryonic neurogenesis involving the Notch signaling pathway in a PRC1-independent pattern. Stem Cell Reports 16:2988–3004. https://doi.org/10.1016/j.stemcr.2021.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hijroudi F et al (2022) Neural stem cells secretome increased neurogenesis and behavioral performance and the activation of Wnt/beta-catenin signaling pathway in mouse model of alzheimer’s disease. Neuromolecular Med 24:424–436. https://doi.org/10.1007/s12017-022-08708-z

    Article  CAS  PubMed  Google Scholar 

  28. Batista MR et al (2021) Balanced Notch-Wnt signaling interplay is required for mouse embryo and fetal development. Reproduction 161:385–398. https://doi.org/10.1530/REP-20-0435

    Article  CAS  PubMed  Google Scholar 

  29. Jang C et al (2011) Calsenilin regulates presenilin 1/gamma-secretase-mediated N-cadherin epsilon-cleavage and beta-catenin signaling. FASEB J 25:4174–4183. https://doi.org/10.1096/fj.11-185926

    Article  CAS  PubMed  Google Scholar 

  30. Romero AA, Gross SR, Cheng KY, Goldsmith NK, Geller HM (2003) An age-related increase in resistance to DNA damage-induced apoptotic cell death is associated with development of DNA repair mechanisms. J Neurochem 84:1275–1287. https://doi.org/10.1046/j.1471-4159.2003.01629.x

    Article  CAS  PubMed  Google Scholar 

  31. Shirai K et al (2006) Differential effects of x-irradiation on immature and mature hippocampal neurons in vitro. Neurosci Lett 399:57–60. https://doi.org/10.1016/j.neulet.2006.01.048

    Article  CAS  PubMed  Google Scholar 

  32. Semkova V, Haupt S, Segschneider M, Bell C, Ingelman-Sundberg M, Hajo M, Weykopf B, Muthukottiappan P, Till A, Brüstle O (2022) Dynamics of metabolic pathways and stress response patterns during human neural stem cell proliferation and differentiation. Cells 11(9):1388. https://doi.org/10.3390/cells11091388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kagias K, Nehammer C, Pocock R (2012) Neuronal responses to physiological stress. Front Genet 3:222. https://doi.org/10.3389/fgene.2012.00222

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vecera J et al (2020) Hypoxia/Hif1alpha prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 45:101770. https://doi.org/10.1016/j.scr.2020.101770

    Article  CAS  PubMed  Google Scholar 

  35. Bejoy J et al (2020) Wnt-Notch signaling interactions during neural and astroglial patterning of human stem cells. Tissue Eng Part A 26:419–431. https://doi.org/10.1089/ten.TEA.2019.0202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Contreras EG, Egger B, Gold KS, Brand AH (2018) Dynamic notch signalling regulates neural stem cell state progression in the drosophila optic lobe. Neural Dev 13:25. https://doi.org/10.1186/s13064-018-0123-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pronin S, Koh CH, Hughes M (2017) Effects of ultraviolet radiation on glioma: systematic review. J Cell Biochem 118:4063–4071. https://doi.org/10.1002/jcb.26061

    Article  CAS  PubMed  Google Scholar 

  38. Vasilev A, Sofi R, Rahman R, Smith SJ, Teschemacher AG, Kasparov S (2020) Using Light for Therapy of Glioblastoma Multiforme (GBM). Brain Sci 10(2):75. https://doi.org/10.3390/brainsci10020075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by: Shenzhen International Cooperation Projects GJHZ20210705141404013 and SIAT Innovation Program for Excellent Young Researcher award to Q.L.

Author information

Authors and Affiliations

Authors

Contributions

Qian Liu: Conceptualization, Methodology, Investigation, Writing- review and editing, Supervision, Funding acquisition. Lin Zhou: Conceptualization, Methodology, Review and editing, Investigation, Data curation. Zihan Wang: Investigation. Qiuling Zhong: Investigation. Bing Song: Resources. Yan Wang: Resources, Project administration, Writing. Teng Guan: Data curation, Manuscript proof reading. All authors contributed to the study and the manuscript preparation.

Corresponding author

Correspondence to Qian Liu.

Ethics declarations

Ethics Approval and Consent to Participate

The experiments conducted on animals were approved by the IACUC of Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences Research Ethics Committees. The approved project is: Physical stimulation for ischemic stroke treatment. (Approval number: SIAT-IACUC-210615-YGS-LQ-A19952, Approved Date: 06/18/2021).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, Z., Zhong, Q. et al. Ultra-Low-Dose UV-C Photo-stimulation Promotes Neural Stem Cells Differentiation via Presenilin 1 Mediated Notch and β-Catenin Activation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04185-6

Keywords

Navigation