Skip to main content

Advertisement

Log in

Neural Correlates of Early-Life Urbanization and Their Spatial Relationships with Gene Expression, Neurotransmitter, and Behavioral Domain Atlases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous neuroimaging research has established associations between urban exposure during early life and alterations in brain function and structure. However, the molecular mechanisms and behavioral relevance of these associations remain largely unknown. Here, we aimed to address this question using a combined analysis of multimodal data. Initially, we calculated amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV) using resting-state functional and structural MRI to investigate their associations with early-life urbanization in a large sample of 511 healthy young adults. Then, we examined the spatial relationships of the identified neural correlates of early-life urbanization with gene expression, neurotransmitter, and behavioral domain atlases. Results showed that higher early-life urbanization scores were correlated with increased ALFF of the right fusiform gyrus and decreased GMV of the left dorsal medial prefrontal cortex and left precuneus. Remarkably, the identified neural correlates of early-life urbanization were spatially correlated with expression of gene categories primarily involving immune system process, signal transduction, and cellular metabolic process. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including dopamine, acetylcholine, and serotonin. Finally, we found that the ALFF correlates were associated with behavioral terms including “perception,” “sensory,” “cognitive control,” and “reasoning.” Apart from expanding existing knowledge of early-life urban environmental risk for mental disorders and health in general, our findings may contribute to an emerging framework for integrating social science, neuroscience, genetics, and public policy to respond to the major health challenge of world urbanization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not publicly available due to ethical requirements regarding pertinent clinical data but are available from the corresponding author on reasonable request.

References

  1. 2018 Revision of World Urbanization Prospects (United Nations, 2018)

  2. Dye C (2008) Health and urban living. Science 319(5864):766–769. https://doi.org/10.1126/science.1150198

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tost H, Champagne FA, Meyer-Lindenberg A (2015) Environmental influence in the brain, human welfare and mental health. Nat Neurosci 18(10):1421–1431. https://doi.org/10.1038/nn.4108

    Article  CAS  PubMed  Google Scholar 

  4. Peen J, Schoevers RA, Beekman AT, Dekker J (2010) The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr Scand 121(2):84–93. https://doi.org/10.1111/j.1600-0447.2009.01438.x

    Article  CAS  PubMed  Google Scholar 

  5. Krabbendam L, van Os J (2005) Schizophrenia and urbanicity: a major environmental influence–conditional on genetic risk. Schizophr Bull 31(4):795–799. https://doi.org/10.1093/schbul/sbi060

    Article  PubMed  Google Scholar 

  6. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533. https://doi.org/10.1289/ehp.00108s3511

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lamblin M, Murawski C, Whittle S, Fornito A (2017) Social connectedness, mental health and the adolescent brain. Neurosci Biobehav Rev 80:57–68. https://doi.org/10.1016/j.neubiorev.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Liu X, Li Q, Goldblatt R, Qin W, Liu F, Chu C, Luo Q et al (2022) Global urbanicity is associated with brain and behaviour in young people. Nat Hum Behav 6(2):279–293. https://doi.org/10.1038/s41562-021-01204-7

    Article  PubMed  Google Scholar 

  9. Lederbogen F, Kirsch P, Haddad L, Streit F, Tost H, Schuch P, Wust S, Pruessner JC et al (2011) City living and urban upbringing affect neural social stress processing in humans. Nature 474(7352):498–501. https://doi.org/10.1038/nature10190

    Article  CAS  PubMed  Google Scholar 

  10. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. https://doi.org/10.1038/nature11405

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen EH, Overly CC, Jones AR (2012) The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 35(12):711–714. https://doi.org/10.1016/j.tins.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  12. Arnatkeviciute A, Fulcher BD, Fornito A (2019) A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189:353–367. https://doi.org/10.1016/j.neuroimage.2019.01.011

    Article  PubMed  Google Scholar 

  13. Fornito A, Arnatkeviciute A, Fulcher BD (2019) Bridging the gap between connectome and transcriptome. Trends Cogn Sci 23(1):34–50. https://doi.org/10.1016/j.tics.2018.10.005

    Article  PubMed  Google Scholar 

  14. Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, Zhu J, Qian Y (2023) Cerebral blood flow changes and their genetic mechanisms in major depressive disorder: a combined neuroimaging and transcriptome study. Psychol Med 1–13. https://doi.org/10.1017/S0033291722003750

  15. Zhao H, Cai H, Mo F, Lu Y, Yao S, Yu Y, Zhu J (2023) Genetic mechanisms underlying brain functional homotopy: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 33(7):3387–3400. https://doi.org/10.1093/cercor/bhac279. (New York, NY : 1991)

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Zhang C, Meng C, Wang R, Jiang P, Cai H, Zhao W, Yu Y et al (2022) Frequency-dependent genetic modulation of neuronal oscillations: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 32(22):5132–5144. https://doi.org/10.1093/cercor/bhac003. (New York, NY : 1991)

    Article  PubMed  Google Scholar 

  17. Shen Y, Zhang C, Cui S, Wang R, Cai H, Zhao W, Zhu J, Yu Y (2022) Transcriptional substrates underlying functional connectivity profiles of subregions within the human sensorimotor cortex. Hum Brain Mapp 43(18):5562–5578. https://doi.org/10.1002/hbm.26031

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Zhang C, Wang R, Jiang P, Cai H, Zhao W, Zhu J, Yu Y (2022) Molecular basis underlying functional connectivity of fusiform gyrus subregions: a transcriptome-neuroimaging spatial correlation study. Cortex A J Devoted Study Nerv Syst Behav 152:59–73. https://doi.org/10.1016/j.cortex.2022.03.016

    Article  Google Scholar 

  19. Zhang C, Cai H, Xu X, Li Q, Li X, Zhao W, Qian Y, Zhu J et al (2022) Genetic architecture underlying differential resting-state functional connectivity of subregions within the human visual cortex. Cereb Cortex 32(10):2063–2078. https://doi.org/10.1093/cercor/bhab335. (New York, NY : 1991)

    Article  PubMed  Google Scholar 

  20. Song Y, Wang C, Cai H, Chen J, Liu S, Zhu J, Yu Y (2023) Functional hierarchy of the angular gyrus and its underlying genetic architecture. Hum Brain Mapp 44(7):2815–2828. https://doi.org/10.1002/hbm.26247

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Li Q, Qian Y, Cai H, Zhang C, Zhao W, Zhu J, Yu Y (2023) Genetic mechanisms underlying gray matter volume changes in patients with drug-naive first-episode schizophrenia. Cereb Cortex 33(5):2328–2341. https://doi.org/10.1093/cercor/bhac211. (New York, NY : 1991)

    Article  PubMed  Google Scholar 

  22. Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y (2023) Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. Schizophrenia (Heidelb) 9(1):13. https://doi.org/10.1038/s41537-023-00338-z

    Article  CAS  PubMed  Google Scholar 

  23. Fang Q, Cai H, Jiang P, Zhao H, Song Y, Zhao W, Yu Y, Zhu J (2023) Transcriptional substrates of brain structural and functional impairments in drug-naive first-episode patients with major depressive disorder. J Affect Disord 325:522–533. https://doi.org/10.1016/j.jad.2023.01.051

    Article  PubMed  Google Scholar 

  24. Fulcher BD, Arnatkeviciute A, Fornito A (2021) Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nat Commun 12(1):2669. https://doi.org/10.1038/s41467-021-22862-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shine JM (2019) Neuromodulatory influences on integration and segregation in the brain. Trends Cogn Sci 23(7):572–583. https://doi.org/10.1016/j.tics.2019.04.002

    Article  PubMed  Google Scholar 

  26. Beliveau V, Ganz M, Feng L, Ozenne B, Hojgaard L, Fisher PM, Svarer C, Greve DN et al (2017) A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci : Off J Soc Neurosci 37(1):120–128. https://doi.org/10.1523/JNEUROSCI.2830-16.2016

    Article  CAS  Google Scholar 

  27. Lehto J, Johansson J, Vuorilehto L, Luoto P, Arponen E, Scheinin H, Rouru J, Scheinin M (2015) Sensitivity of [(11)C]ORM-13070 to increased extracellular noradrenaline in the CNS - a PET study in human subjects. Psychopharmacology 232(21–22):4169–4178. https://doi.org/10.1007/s00213-015-3941-y

    Article  CAS  PubMed  Google Scholar 

  28. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, Huang Y, Simpson N et al (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21(9):1034–1057. https://doi.org/10.1097/00004647-200109000-00002

    Article  CAS  PubMed  Google Scholar 

  29. McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 30(9):1741–1750. https://doi.org/10.1038/sj.npp.1300736

    Article  CAS  Google Scholar 

  30. Smith GS, Price JC, Lopresti BJ, Huang Y, Simpson N, Holt D, Mason NS, Meltzer CC et al (1998) Test-retest variability of serotonin 5-HT2A receptor binding measured with positron emission tomography and [18F]altanserin in the human brain. Synapse (New York, NY) 30(4):380–392. https://doi.org/10.1002/(SICI)1098-2396(199812)30:4%3c380::AID-SYN5%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  31. Hansen JY, Shafiei G, Markello RD, Smart K, Cox SML, Norgaard M, Beliveau V, Wu Y et al (2022) Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci 25(11):1569–1581. https://doi.org/10.1038/s41593-022-01186-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670. https://doi.org/10.1038/nmeth.1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haddad L, Schafer A, Streit F, Lederbogen F, Grimm O, Wust S, Deuschle M, Kirsch P et al (2015) Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia. Schizophr Bull 41(1):115–122. https://doi.org/10.1093/schbul/sbu072

    Article  PubMed  Google Scholar 

  34. Mortensen PB, Pedersen CB, Westergaard T, Wohlfahrt J, Ewald H, Mors O, Andersen PK, Melbye M (1999) Effects of family history and place and season of birth on the risk of schizophrenia. N Engl J Med 340(8):603–608. https://doi.org/10.1056/NEJM199902253400803

    Article  CAS  PubMed  Google Scholar 

  35. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3):339–351. https://doi.org/10.1007/s12021-016-9299-4

    Article  PubMed  Google Scholar 

  36. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007

    Article  PubMed  Google Scholar 

  37. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91. https://doi.org/10.1016/j.braindev.2006.07.002

    Article  PubMed  Google Scholar 

  38. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  PubMed  Google Scholar 

  39. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, Jegga AG, Aronow BJ et al (2015) Canonical genetic signatures of the adult human brain. Nat Neurosci 18(12):1832–1844. https://doi.org/10.1038/nn.4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arloth J, Bader DM, Roh S, Altmann A (2015) Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE 10(10):e0139516. https://doi.org/10.1371/journal.pone.0139516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD (2020) Generative modeling of brain maps with spatial autocorrelation. Neuroimage 220:117038. https://doi.org/10.1016/j.neuroimage.2020.117038

    Article  PubMed  Google Scholar 

  42. Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, Hesse S, Barthel H et al (2021) JuSpace: a tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum Brain Mapp 42(3):555–566. https://doi.org/10.1002/hbm.25244

    Article  PubMed  Google Scholar 

  43. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C et al (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26(8):3508–3526. https://doi.org/10.1093/cercor/bhw157. (New York, NY : 1991)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kanwisher N, McDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci: Off J Soc Neurosci 17(11):4302–4311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997

    Article  CAS  Google Scholar 

  45. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JD, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10(4):512–522. https://doi.org/10.1038/nn1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forseth KJ, Kadipasaoglu CM, Conner CR, Hickok G, Knight RT, Tandon N (2018) A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain 141(7):2112–2126. https://doi.org/10.1093/brain/awy120

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K et al (2017) Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci USA 114(46):12285–12290. https://doi.org/10.1073/pnas.1713447114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD (2008) Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42(2):998–1031. https://doi.org/10.1016/j.neuroimage.2008.03.059

    Article  PubMed  Google Scholar 

  49. Zhang X, Yan H, Yu H, Zhao X, Shah S, Dong Z, Yang G, Zhang X et al (2021) Childhood urbanicity interacts with polygenic risk for depression to affect stress-related medial prefrontal function. Transl Psychiatry 11(1):522. https://doi.org/10.1038/s41398-021-01650-x

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reed JL, D’Ambrosio E, Marenco S, Ursini G, Zheutlin AB, Blasi G, Spencer BE, Romano R et al (2018) Interaction of childhood urbanicity and variation in dopamine genes alters adult prefrontal function as measured by functional magnetic resonance imaging (fMRI). PLoS ONE 13(4):e0195189. https://doi.org/10.1371/journal.pone.0195189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci : Off J Soc Neurosci 27(11):2781–2787. https://doi.org/10.1523/JNEUROSCI.4372-06.2007

    Article  CAS  Google Scholar 

  52. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125(1):1–6. https://doi.org/10.1016/j.neuroscience.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  53. Pujol J, Martinez-Vilavella G, Macia D, Fenoll R, Alvarez-Pedrerol M, Rivas I, Forns J, Blanco-Hinojo L et al (2016) Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage 129:175–184. https://doi.org/10.1016/j.neuroimage.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  54. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583. https://doi.org/10.1093/brain/awl004

    Article  PubMed  Google Scholar 

  55. Kim GW, Jeong GW, Kim TH, Baek HS, Oh SK, Kang HK, Lee SG, Kim YS et al (2010) Functional neuroanatomy associated with natural and urban scenic views in the human brain: 3.0T functional MR imaging. Korean J Radiol 11(5):507–513. https://doi.org/10.3348/kjr.2010.11.5.507

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lammeyer S, Dietsche B, Dannlowski U, Kircher T, Krug A (2019) Evidence of brain network aberration in healthy subjects with urban upbringing - a multimodal DTI and VBM study. Schizophr Res 208:133–137. https://doi.org/10.1016/j.schres.2019.03.027

    Article  PubMed  Google Scholar 

  57. Shen Z, Cheng Y, Yang S, Dai N, Ye J, Liu X, Lu J, Li N et al (2016) Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. NeuroImage Clinical 12:492–498. https://doi.org/10.1016/j.nicl.2016.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cascella NG, Fieldstone SC, Rao VA, Pearlson GD, Sawa A, Schretlen DJ (2010) Gray-matter abnormalities in deficit schizophrenia. Schizophr Res 120(1–3):63–70. https://doi.org/10.1016/j.schres.2010.03.039

    Article  PubMed  Google Scholar 

  59. Salvadore G, Nugent AC, Lemaitre H, Luckenbaugh DA, Tinsley R, Cannon DM, Neumeister A, Zarate CA Jr et al (2011) Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. Neuroimage 54(4):2643–2651. https://doi.org/10.1016/j.neuroimage.2010.11.011

    Article  PubMed  Google Scholar 

  60. Lu F, Cui Q, Chen Y, He Z, Sheng W, Tang Q, Yang Y, Luo W et al (2023) Insular-associated causal network of structural covariance evaluating progressive gray matter changes in major depressive disorder. Cereb Cortex 33(3):831–843. https://doi.org/10.1093/cercor/bhac105. (New York, NY : 1991)

    Article  PubMed  Google Scholar 

  61. Strawn JR, Hamm L, Fitzgerald DA, Fitzgerald KD, Monk CS, Phan KL (2015) Neurostructural abnormalities in pediatric anxiety disorders. J Anxiety Disord 32:81–88. https://doi.org/10.1016/j.janxdis.2015.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  62. van der Wal JM, van Borkulo CD, Deserno MK, Breedvelt JJF, Lees M, Lokman JC, Borsboom D, Denys D et al (2021) Advancing urban mental health research: from complexity science to actionable targets for intervention. Lancet Psychiatry 8(11):991–1000. https://doi.org/10.1016/S2215-0366(21)00047-X

    Article  PubMed  Google Scholar 

  63. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251. https://doi.org/10.1038/nri1571

    Article  CAS  PubMed  Google Scholar 

  64. Barrett TJ, Corr EM, van Solingen C, Schlamp F, Brown EJ, Koelwyn GJ, Lee AH, Shanley LC et al (2021) Chronic stress primes innate immune responses in mice and humans. Cell Rep 36(10):109595. https://doi.org/10.1016/j.celrep.2021.109595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Glencross DA, Ho TR, Camina N, Hawrylowicz CM, Pfeffer PE (2020) Air pollution and its effects on the immune system. Free Radic Biol Med 151:56–68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179

    Article  CAS  PubMed  Google Scholar 

  66. Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM (2021) ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev 131:792–805. https://doi.org/10.1016/j.neubiorev.2021.10.009

    Article  CAS  PubMed  Google Scholar 

  67. Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH (2011) The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci: Off J Soc Neurosci 31(3):843–850. https://doi.org/10.1523/JNEUROSCI.3239-10.2011

    Article  CAS  Google Scholar 

  68. Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci: Off J Soc Neurosci 28(27):6983–6995. https://doi.org/10.1523/JNEUROSCI.0679-08.2008

    Article  CAS  Google Scholar 

  69. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116(3):467–479. https://doi.org/10.1016/s0092-8674(04)00115-1

    Article  CAS  PubMed  Google Scholar 

  70. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yasuda R, Hayashi Y, Hell JW (2022) CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 23(11):666–682. https://doi.org/10.1038/s41583-022-00624-2

    Article  CAS  PubMed  Google Scholar 

  72. Wong RO, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3(10):803–812. https://doi.org/10.1038/nrn941

    Article  CAS  PubMed  Google Scholar 

  73. Saito A, Cavalli V (2016) Signaling over distances. Mol Cell Proteomics 15(2):382–393. https://doi.org/10.1074/mcp.R115.052753

    Article  CAS  PubMed  Google Scholar 

  74. Hafner A, Bulyk ML, Jambhekar A, Lahav G (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20(4):199–210. https://doi.org/10.1038/s41580-019-0110-x

    Article  CAS  PubMed  Google Scholar 

  75. Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10(6):576–583. https://doi.org/10.1038/embor.2009.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marin Navarro A, Pronk RJ, van der Geest AT, Oliynyk G, Nordgren A, Arsenian-Henriksson M, Falk A, Wilhelm M (2020) p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis 11(1):52. https://doi.org/10.1038/s41419-019-2208-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tooley UA, Bassett DS, Mackey AP (2021) Environmental influences on the pace of brain development. Nat Rev Neurosci 22(6):372–384. https://doi.org/10.1038/s41583-021-00457-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xue K, Gao B, Chen F, Wang M, Cheng J, Zhang B, Zhu W, Qiu S et al (2023) Covariation of preadult environmental exposures, adult brain imaging phenotypes, and adult personality traits. Mol Psychiatry. https://doi.org/10.1038/s41380-023-02261-2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Flies EJ, Mavoa S, Zosky GR, Mantzioris E, Williams C, Eri R, Brook BW, Buettel JC (2019) Urban-associated diseases: candidate diseases, environmental risk factors, and a path forward. Environ Int 133(Pt A):105187. https://doi.org/10.1016/j.envint.2019.105187

    Article  PubMed  Google Scholar 

  80. Costa ESJA, Steffen RE (2019) Urban environment and psychiatric disorders: a review of the neuroscience and biology. Metabolism 100S:153940. https://doi.org/10.1016/j.metabol.2019.07.004

    Article  CAS  Google Scholar 

  81. Baik JH (2020) Stress and the dopaminergic reward system. Exp Mol Med 52(12):1879–1890. https://doi.org/10.1038/s12276-020-00532-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kramer B, Diekhof EK, Gruber O (2017) Effects of city living on the mesolimbic reward system-an fmri study. Hum Brain Mapp 38(7):3444–3453. https://doi.org/10.1002/hbm.23600

    Article  PubMed  PubMed Central  Google Scholar 

  83. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S et al (2013) Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339(6117):335–339. https://doi.org/10.1126/science.1226931

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516. https://doi.org/10.1016/j.tins.2009.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Greve HJ, Dunbar AL, Lombo CG, Ahmed C, Thang M, Messenger EJ, Mumaw CL, Johnson JA et al (2023) The bidirectional lung brain-axis of amyloid-beta pathology: ozone dysregulates the peri-plaque microenvironment. Brain 146(3):991–1005. https://doi.org/10.1093/brain/awac113

    Article  PubMed  Google Scholar 

  86. Mendonca CR, Manhaes-de-Castro R, de Santana B, Olegario da Silva L, Toscano AE, Guzman-Quevedo O, Galindo LCM (2022) Effects of flavonols on emotional behavior and compounds of the serotonergic system: a preclinical systematic review. Eur J Pharmacol 916. https://doi.org/10.1016/j.ejphar.2021.174697

  87. Generaal E, Hoogendijk EO, Stam M, Henke CE, Rutters F, Oosterman M, Huisman M, Kramer SE et al (2019) Neighbourhood characteristics and prevalence and severity of depression: pooled analysis of eight Dutch cohort studies. Br J Psychiatry : J Ment Sci 215(2):468–475. https://doi.org/10.1192/bjp.2019.100

    Article  Google Scholar 

  88. Homberg JR, Molteni R, Calabrese F, Riva MA (2014) The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev 43:35–47. https://doi.org/10.1016/j.neubiorev.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  89. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. https://doi.org/10.1016/j.neubiorev.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  90. Hirst RJ, Cassarino M, Kenny RA, Newell FN, Setti A (2022) Urban and rural environments differentially shape multisensory perception in ageing. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 29(2):197–212. https://doi.org/10.1080/13825585.2020.1859084

    Article  PubMed  Google Scholar 

  91. Avan BI, Raza SA, Kirkwood BR (2014) A community-based study of early childhood sensory stimulation in home environment associated with growth and psychomotor development in Pakistan. Int J Public Health 59(5):779–788. https://doi.org/10.1007/s00038-013-0525-7

    Article  PubMed  Google Scholar 

  92. Cassarino M, O’Sullivan V, Kenny RA, Setti A (2018) Disabilities moderate the association between neighbourhood urbanity and cognitive health: Results from the Irish longitudinal study on ageing. Disabil Health J 11(3):359–366. https://doi.org/10.1016/j.dhjo.2017.12.002

    Article  PubMed  Google Scholar 

  93. Saenz JL, Downer B, Garcia MA, Wong R (2018) Cognition and context: rural-urban differences in cognitive aging among older Mexican adults. J Aging Health 30(6):965–986. https://doi.org/10.1177/0898264317703560

    Article  PubMed  Google Scholar 

  94. Orsholits D, Cullati S, Cheval B, Ghisletta P, Oris M, Maurer J, Studer M, Marques A et al (2022) Residential trajectories across the life course and their association with cognitive functioning in later life. Sci Rep 12(1):17004. https://doi.org/10.1038/s41598-022-18501-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cassarino M, O’Sullivan V, Kenny RA, Setti A (2016) Environment and cognitive aging: a cross-sectional study of place of residence and cognitive performance in the Irish longitudinal study on aging. Neuropsychology 30(5):543–557. https://doi.org/10.1037/neu0000253

    Article  PubMed  Google Scholar 

  96. Gupta S, Vaida F, Riggs K, Jin H, Grant I, Cysique L, Shi C, Yu X, Group H I V N R C et al (2011) Neuropsychological performance in mainland China: the effect of urban/rural residence and self-reported daily academic skill use. J Int Neuropsychol Soc : JINS 17(1):163–173. https://doi.org/10.1017/S1355617710001384

    Article  PubMed  Google Scholar 

  97. Berman MG, Jonides J, Kaplan S (2008) The cognitive benefits of interacting with nature. Psychol Sci 19(12):1207–1212. https://doi.org/10.1111/j.1467-9280.2008.02225.x

    Article  PubMed  Google Scholar 

  98. Robbins RN, Scott T, Joska JA, Gouse H (2019) Impact of urbanization on cognitive disorders. Curr Opin Psychiatry 32(3):210–217. https://doi.org/10.1097/YCO.0000000000000490

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mogavero F, Jager A, Glennon JC (2018) Clock genes, ADHD and aggression. Neurosci Biobehav Rev 51–68. https://doi.org/10.1016/j.neubiorev.2016.11.002

  100. Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872. https://doi.org/10.1016/j.neuron.2008.08.019

    Article  CAS  PubMed  Google Scholar 

  101. Cools R, Arnsten AFT (2022) Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 47(1):309–328. https://doi.org/10.1038/s41386-021-01100-8

    Article  PubMed  Google Scholar 

  102. Samuels IS, Saitta SC, Landreth GE (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61(2):160–167. https://doi.org/10.1016/j.neuron.2009.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW (2023) Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 24(4):233–251. https://doi.org/10.1038/s41583-023-00677-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sudimac S, Sale V, Kuhn S (2022) How nature nurtures: amygdala activity decreases as the result of a one-hour walk in nature. Mol Psychiatry 27(11):4446–4452. https://doi.org/10.1038/s41380-022-01720-6

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bratman GN, Hamilton JP, Hahn KS, Daily GC, Gross JJ (2015) Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc Natl Acad Sci USA 112(28):8567–8572. https://doi.org/10.1073/pnas.1510459112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Allen Institute for Brain Science founders and staff who supplied the brain expression data.

Funding

This work was supported by the Anhui Provincial Natural Science Foundation (grant numbers: 2308085MH277 and 2208085MH257), the Outstanding Youth Support Project of Anhui Province Universities (grant number: gxyqZD2022026), the Scientific Research Key Project of Anhui Province Universities (grant number: 2022AH051135), and the Scientific Research Foundation of Anhui Medical University (grant number: 2022xkj143).

Author information

Authors and Affiliations

Authors

Contributions

Jiajia Zhu was involved in the conception and design of the study, the acquisition and analysis of data, drafting, and preparation of the manuscript. Yinfeng Qian was involved in the conception and design of the study and the acquisition and analysis of data. Weisheng Huang was involved in the conception and design of the study, the acquisition and analysis of data, and drafting the manuscript. Xuetian Sun, Xiaohan Zhang, and Ruoxuan Xu were involved in the acquisition and analysis of data. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Yinfeng Qian or Jiajia Zhu.

Ethics declarations

Ethics Approval

This study was approved by the ethics committee of The First Affiliated Hospital of Anhui Medical University (20200094).

Consent to Participate

Written informed consent was obtained from all participants after they had been given a complete description of the study.

Consent for Publication

Not applicable to this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Sun, X., Zhang, X. et al. Neural Correlates of Early-Life Urbanization and Their Spatial Relationships with Gene Expression, Neurotransmitter, and Behavioral Domain Atlases. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03962-7

Keywords

Navigation