Skip to main content
Log in

Inpp5e Regulated the Cilium-Related Genes Contributing to the Neural Tube Defects Under 5-Fluorouracil Exposure

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Primary cilia are crucial for neurogenesis, and cilium-related genes are involved in the closure of neural tubes. Inositol polyphosphate-5-phosphatase (Inpp5e) was enriched in primary cilia and closely related to the occurrence of neural tube defects (NTDs). However, the role of Inpp5e in the development of NTDs is not well-known. To investigate whether Inpp5e gene is associated with the neural tube closure, we established a mouse model of NTDs by 5-fluorouracil (5-FU) exposure at gestational day 7.5 (GD7.5). The Inpp5e knockdown (Inpp5e-/-) mouse embryonic stem cells (mESCs) were produced by CRISPR/Cas9 system. The expressions of Inpp5e and other cilium-related genes including intraflagellar transport 80 (Ift80), McKusick-Kaufman syndrome (Mkks), and Kirsten rat sarcoma viral oncogene homolog (Kras) were determined, utilizing quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, PCR array, and immunofluorescence staining. The result showed that the incidence of NTDs was 37.10% (23 NTDs/62 total embryos) and significantly higher than that in the control group (P < 0.001). The neuroepithelial cells of neural tubes were obviously disarranged in NTD embryos. The mRNA and protein levels of Inpp5e, Ift80, Mkks, and Kras were significantly decreased in NTD embryonic brain tissues, compared to the control (P < 0.05). Knockdown of the Inpp5e (Inpp5e-/-) reduced the expressions of Ift80, Mkks, and Kras in mESCs. Furthermore, the levels of α-tubulin were significantly reduced in NTD embryonic neural tissue and Inpp5e-/- mESCs. These results suggested that maternal 5-FU exposure inhibited the expression of Inpp5e, which resulted in the downregulation of cilium-related genes (Ift80, Mkks, and Kras), leading to the impairment of primary cilium development, and ultimately disrupted the neural tube closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Facchinetti F, Cavalli P, Copp A et al (2020) An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opin Drug Metab Toxicol 16:1187–1198. https://doi.org/10.1080/17425255.2020.1828344

    Article  PubMed  CAS  Google Scholar 

  2. van der Put NM, Gabreëls F, Stevens EM et al A second common mutation in the methylenetetrahydrofolate reductase ge ne: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051. https://doi.org/10.1086/301825

  3. Copp AJ, Greene NDE Genetics and development of neural tube defects. J Pathol 220:217–230. https://doi.org/10.1002/path.2643

  4. Jacoby M, Cox JJ, Gayral S et al (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41:1027–1031. https://doi.org/10.1038/ng.427

    Article  PubMed  CAS  Google Scholar 

  5. Bielas SL, Silhavy JL, Brancati F et al (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036. https://doi.org/10.1038/ng.423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Maerz LD, Burkhalter MD, Schilpp C et al (2019) Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish. Commun Biol 2:31. https://doi.org/10.1038/s42003-018-0272-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shi H, Wang H, Zhang C et al (2022) Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling. JCI Insight 7. https://doi.org/10.1172/jci.insight.149626

  8. Xie C, Habif JC, Ukhanov K et al (2022) Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight 7. https://doi.org/10.1172/jci.insight.158736

  9. Hakim S, Dyson JM, Feeney SJ et al (2016) Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 25:2295–2313. https://doi.org/10.1093/hmg/ddw097

    Article  PubMed  CAS  Google Scholar 

  10. Xu W, Jin M, Huang W et al (2019) Apical PtdIns(4,5)P(2) is required for ciliogenesis and suppression of polycystic kidney disease. Faseb J 33:2848–2857. https://doi.org/10.1096/fj.201800385RRR

    Article  PubMed  CAS  Google Scholar 

  11. Hasenpusch-Theil K, Laclef C, Colligan M et al (2020) A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. Elife 9. https://doi.org/10.7554/eLife.58162

  12. Dyson JM, Conduit SE, Feeney SJ et al (2017) INPP5E regulates phosphoinositide-dependent cilia transition zone function. J Cell Biol 216:247–263. https://doi.org/10.1083/jcb.201511055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Barsch F, Niedermair T, Mamilos A et al (2020) Physiological and pathophysiological aspects of primary cilia-a literature review with view on functional and structural relationships in cartilage. Int J Mol Sci 21. https://doi.org/10.3390/ijms21144959

  14. Valente EM, Rosti RO, Gibbs E et al (2014) Primary cilia in neurodevelopmental disorders. Nat Rev Neurol 10:27–36. https://doi.org/10.1038/nrneurol.2013.247

    Article  PubMed  Google Scholar 

  15. Vogel TW, Carter CS, Abode-Iyamah K et al (2012) The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg Focus 33:E2. https://doi.org/10.3171/2012.6.Focus12222

    Article  PubMed  Google Scholar 

  16. Shimada IS, Mukhopadhyay S G-protein-coupled receptor signaling and neural tube closure defects. Birth Defects Res 109:129–139. https://doi.org/10.1002/bdra.23567

  17. Boschen KE, Fish EW, Parnell SE Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol (Elmsford, N.Y.) 105:136–147. https://doi.org/10.1016/j.reprotox.2021.09.002

  18. Yue H, Zhu X, Li S et al (2018) Relationship between INPP5E gene expression and embryonic neural development in a mouse model of neural tube defect. Med Sci Monit 24:2053–2059. https://doi.org/10.12659/msm.906095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yue H, Li S, Qin J et al (2021) Down-regulation of Inpp5e associated with abnormal ciliogenesis during embryonic neurodevelopment under inositol deficiency. Front Neurol 12:579998. https://doi.org/10.3389/fneur.2021.579998

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Guan Z, Dong Y et al Inhibition of thymidylate synthase affects neural tube development in mice. Reprod Toxicol (Elmsford, N.Y.) 76:17–25. https://doi.org/10.1016/j.reprotox.2017.12.007

  21. Forcioli-Conti N, Estève D, Bouloumié A et al (2016) The size of the primary cilium and acetylated tubulin are modulated during adipocyte differentiation: analysis of HDAC6 functions in these processes. Biochimie 124:112–123. https://doi.org/10.1016/j.biochi.2015.09.011

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Wang J, Guan T et al (2014) Role of methotrexate exposure in apoptosis and proliferation during early neurulation. J Appl Toxicol 34:862–869. https://doi.org/10.1002/jat.2901

    Article  PubMed  CAS  Google Scholar 

  23. Zhao J, Guan T, Wang J et al (2013) Influence of the antifolate drug methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915–923. https://doi.org/10.1002/jat.2769

    Article  PubMed  CAS  Google Scholar 

  24. Ramos AR, Elong Edimo W, Erneux C (2018) Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul 67:40–48. https://doi.org/10.1016/j.jbior.2017.09.001

    Article  PubMed  CAS  Google Scholar 

  25. Ooms LM, Horan KA, Rahman P et al (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49. https://doi.org/10.1042/bj20081673

    Article  PubMed  CAS  Google Scholar 

  26. Conduit SE, Davies EM, Fulcher AJ et al (2021) Superresolution microscopy reveals distinct phosphoinositide subdomains within the cilia transition zone. Front Cell Dev Biol 9:634649. https://doi.org/10.3389/fcell.2021.634649

    Article  PubMed  PubMed Central  Google Scholar 

  27. Travaglini L, Brancati F, Silhavy J et al (2013) Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders. Eur J Hum Genet 21:1074–1078. https://doi.org/10.1038/ejhg.2012.305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Phua SC, Chiba S, Suzuki M et al (2017) Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168:264–279.e215. https://doi.org/10.1016/j.cell.2016.12.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sangermano R, Deitch I, Peter VG et al (2021) Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. NPJ Genom Med 6:53. https://doi.org/10.1038/s41525-021-00214-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li S, Luo D, Yue H et al (2021) Neural tube defects: role of lithium carbonate exposure in embryonic neural development in a murine model. Pediatr Res 90:82–92. https://doi.org/10.1038/s41390-020-01244-1

    Article  PubMed  CAS  Google Scholar 

  31. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633. https://doi.org/10.1126/science.1124534

    Article  PubMed  CAS  Google Scholar 

  32. Guemez-Gamboa A, Coufal NG, Gleeson JG (2014) Primary cilia in the developing and mature brain. Neuron 82:511–521. https://doi.org/10.1016/j.neuron.2014.04.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lechtreck KF (2015) IFT-cargo interactions and protein transport in cilia. Trends Biochem Sci 40:765–778. https://doi.org/10.1016/j.tibs.2015.09.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Taschner M, Weber K, Mourão A et al (2016) Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. Embo j 35:773–790. https://doi.org/10.15252/embj.201593164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Taschner M, Lorentzen A, Mourão A et al (2018) Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. Elife 7. https://doi.org/10.7554/eLife.33067

  36. Rix S, Calmont A, Scambler PJ et al (2011) An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet 20:1306–1314. https://doi.org/10.1093/hmg/ddr013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Reck M, Carbone DP, Garassino M et al (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110. https://doi.org/10.1016/j.annonc.2021.06.001

    Article  PubMed  CAS  Google Scholar 

  38. Wong SY, Seol AD, So PL et al (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055–1061. https://doi.org/10.1038/nm.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Youn YH, Hou S, Wu CC et al (2022) Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 36:737–751. https://doi.org/10.1101/gad.349596.122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bangs FK, Miller P, O’Neill E (2020) Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis Model Mech 13. https://doi.org/10.1242/dmm.044289

  41. Seeley ES, Carrière C, Goetze T et al (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69:422–430. https://doi.org/10.1158/0008-5472.Can-08-1290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kobayashi T, Nakazono K, Tokuda M et al (2017) HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep 18:334–343. https://doi.org/10.15252/embr.201541922

    Article  PubMed  CAS  Google Scholar 

  43. Vössing C, Atigbire P, Eilers J et al (2021) The major ciliary isoforms of RPGR build different interaction complexes with INPP5E and RPGRIP1L. Int J Mol Sci 22. https://doi.org/10.3390/ijms22073583

  44. Ukhanov K, Uytingco C, Green W et al (2022) INPP5E controls ciliary localization of phospholipids and the odor response in olfactory sensory neurons. J Cell Sci 135. https://doi.org/10.1242/jcs.258364

  45. Sharif AS, Gerstner CD, Cady MA et al (2021) Deletion of the phosphatase INPP5E in the murine retina impairs photoreceptor axoneme formation and prevents disc morphogenesis. J Biol Chem 296:100529. https://doi.org/10.1016/j.jbc.2021.100529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Jing Pan for her constructive suggestions during the process.

Funding

This work was supported by the Natural Science Foundation of Beijing Municipal (7222016), Research Foundation of the Capital Institute of Pediatrics (CXYJ-2021-03, JCYJ-2023-05) and National Natural Science Foundation of China (U23A20420).

Author information

Authors and Affiliations

Authors

Contributions

JW, ZG, XW and JY contributed to the study conception and design. XW, JY, and HY performed the experiment and drafted the article. SL, AY, ZZ, and ZG analyzed the data. XW and JW made contribution to the funding acquisition. All authors approved the final manuscript.

Corresponding authors

Correspondence to Zhen Guan or Jianhua Wang.

Ethics declarations

Ethics Approval

All animal experiments were reviewed and approved by the Ethics Committee of the Capital Institute Pediatrics (DWLL2021013). All procedures are strictly in compliance with the relevant regulations of the Chinese Council on Animal Care.

Consent to Participate

None.

Consent for Publication

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 12.5 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, J., Yue, H. et al. Inpp5e Regulated the Cilium-Related Genes Contributing to the Neural Tube Defects Under 5-Fluorouracil Exposure. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03946-7

Keywords

Navigation