Skip to main content

Advertisement

Log in

Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data which supports this study is available on request from the corresponding author upon appropriate request.

References

  1. Gustafson DR, McFarlane SI (2018) Epidemiology of type 2 diabetes and dementia. Type 2 Diabetes Dement 5–27. https://doi.org/10.1016/B978-0-12-809454-9.00002-0

  2. Moran C, Beare R, Phan TG et al (2015) Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85:1123–1130. https://doi.org/10.1212/WNL.0000000000001982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. André C, Dinel A, Ferreira G, et al (2014) Brain, behavior, and immunity diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation 41:10–21. https://doi.org/10.1016/j.bbi.2014.03.012

  4. Chakraborty A, Hegde S, Praharaj SK et al (2021) Age related prevalence of mild cognitive impairment in type 2 diabetes mellitus patients in the indian population and association of serum lipids with cognitive dysfunction. Front Endocrinol (Lausanne) 12. https://doi.org/10.3389/FENDO.2021.798652

  5. Panyawattanakit C, Wongpradit W, Kanhasing R, Kulalert P (2022) Cognitive impairment and associated factors among older adults with diabetes in a Suburban Primary Health Center in Thailand. Dement Geriatr Cogn Disord 51:175–181. https://doi.org/10.1159/000524132

    Article  PubMed  Google Scholar 

  6. Lin CF, Liu HC, Lin SY (2022) Kidney function and risk of physical and cognitive impairment in older persons with type 2 diabetes at an outpatient clinic with geriatric assessment implementation. Diabetes, Metab Syndr Obes Targets Ther 15:79. https://doi.org/10.2147/DMSO.S341935

    Article  CAS  Google Scholar 

  7. Junyi P, Siou L, Simeng W et al (2022) Pathogenesis and research progress of diabetes and cognitive impairment. J Clin Rev Case Reports 7:82. https://doi.org/10.33140/jcrc.07.05.02

    Article  Google Scholar 

  8. Moran C, Phan TG, Chen J et al (2013) Brain atrophy in type 2 diabetesregional distribution and influence on cognition. Diabetes Care 36:4036–4042. https://doi.org/10.2337/DC13-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biessels GJ (2013) Brain MRI correlates of cognitive dysfunction in type 2 diabetes: the needle recovered from the haystack? Diabetes Care 36:3855–3856. https://doi.org/10.2337/dc13-1501

    Article  PubMed  PubMed Central  Google Scholar 

  10. Frison E, Proust-Lima C, Mangin JF et al (2021) Diabetes mellitus and cognition: pathway analysis in the MEMENTO Cohort. Neurology 97:E836–E848. https://doi.org/10.1212/WNL.0000000000012440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rollins CPE, Gallino D, Kong V et al (2019) Contributions of a high-fat diet to Alzheimer’s disease-related decline: a longitudinal behavioural and structural neuroimaging study in mouse models. NeuroImage Clin 21:101606. https://doi.org/10.1016/j.nicl.2018.11.016

    Article  PubMed  Google Scholar 

  12. Jana A, Wang X, Leasure JW et al (2022) Increased Type I interferon signaling and brain endothelial barrier dysfunction in an experimental model of Alzheimer’s disease. Sci Reports 121(12):1–16. https://doi.org/10.1038/s41598-022-20889-y

  13. Yuan L, Mao Y, Luo W et al (2017) cro Palmitic acid dysregulates the Hippo – YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS – STING – IRF3 signaling mechanism. J Biol Chem 292:15002–15015. https://doi.org/10.1074/jbc.M117.804005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong L, Li W, Chang E et al (2022) mtDNA-STING axis mediates microglial polarization via IRF3/NF-κB signaling after ischemic stroke. Front Immunol 13. https://doi.org/10.3389/FIMMU.2022.860977

  15. Willemsen J, Neuhoff MT, Hoyler T et al (2021) TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep 37:109977. https://doi.org/10.1016/j.celrep.2021.109977

    Article  CAS  PubMed  Google Scholar 

  16. Gamdzyk M, Doycheva DM, Araujo C et al (2020) cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol 57:2600–2619. https://doi.org/10.1007/S12035-020-01904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao Y, Cheng J, Kong X et al (2020) HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics 10:9644–9662. https://doi.org/10.7150/thno.47651

  18. Jauhari A, Baranov SV, Suofu Y et al (2020) Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 130:3124–3136. https://doi.org/10.1172/JCI135026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu Y, Zhang Y, Zhao X et al (2019) STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis Find the latest version: STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. 129:546–555. https://doi.org/10.1172/JCI121842

  20. Taylor JM, Moore Z, Minter MR, Crack PJ (2018) Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease.125:797–807. https://doi.org/10.1007/s00702-017-1745-4

  21. Geng K, Ma X, Jiang Z et al (2023) High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages. Cell Death Discov 91(9):1–16. https://doi.org/10.1038/s41420-023-01425-x

  22. Ablasser A, Chen ZJ (2019) CGAS in action: Expanding roles in immunity and inflammation. Science 363:eaat8657. https://doi.org/10.1126/science.aat8657

  23. Chung KW, Dhillon P, Huang S et al (2019) Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis article mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab 30:784-799.e5. https://doi.org/10.1016/j.cmet.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nazmi A, Field RH, Griffin EW et al (2019) Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 67:1254–1276. https://doi.org/10.1002/glia.23592

  25. Piantadosi CA (2020) Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med.152:455–461. https://doi.org/10.1016/j.freeradbiomed.2020.01.013

  26. Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet 20:657–674. https://doi.org/10.1038/S41576-019-0151-1

    Article  CAS  PubMed  Google Scholar 

  27. Abreha MH, Ojelade S, Dammer EB et al (2021) TBK1 interacts with tau and enhances neurodegeneration in tauopathy. J Biol Chem 296:100760. https://doi.org/10.1016/j.jbc.2021.100760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balka KR, Louis C, Saunders TL et al (2020) TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells. Cell Rep 31:107492. https://doi.org/10.1016/j.celrep.2020.03.056

    Article  CAS  PubMed  Google Scholar 

  29. Pokatayev V, Hasin N, Chon H et al (2016) RNase H2 catalytic core Aicardi-Goutières syndrome–related mutant invokes cGAS–STING innate immune-sensing pathway in mice. J Exp Med 213:329–336. https://doi.org/10.1084/JEM.20151464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rice GI, Forte GMA, Szynkiewicz M et al (2013) Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study. Lancet Neurol 12:1159–1169. https://doi.org/10.1016/S1474-4422(13)70258-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crow YJ (2015) Manel N (2015) Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 157(15):429–440. https://doi.org/10.1038/nri3850

    Article  CAS  Google Scholar 

  32. Preeti K, Sood A, Fernandes V (2021) Metabolic regulation of glia and their neuroinflammatory role in Alzheimer’s disease. Cell Mol Neurobiol.42. https://doi.org/10.1007/s10571-021-01147-7

  33. Ho GT, Boyapati RK, Tamborska A, Dorward DA (2017) Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 6. https://doi.org/10.12688/F1000RESEARCH.10397.1

  34. Pérez-Treviño P, Velásquez M, García N (2020) Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis 1866. https://doi.org/10.1016/J.BBADIS.2020.165761

  35. Yuzefovych LV, Pastukh VM, Ruchko MV et al (2019) Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance. PLoS One 14. https://doi.org/10.1371/JOURNAL.PONE.0222278

  36. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8. https://doi.org/10.1371/JOURNAL.PONE.0054059

  37. Ruchko M, Gorodnya O, LeDoux SP et al (2005) Mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis in oxidant-challenged lung endothelial cells. Am J Physiol - Lung Cell Mol Physiol 288. https://doi.org/10.1152/AJPLUNG.00255.2004

  38. West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17:363–375. https://doi.org/10.1038/NRI.2017.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clausen BH, Lambertsen KL, Babcock AA et al (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. 18:1–18. https://doi.org/10.1186/1742-2094-5-46

  40. Konno H, Yamauchi S, Berglund A et al (2018) Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37:2037–2051. https://doi.org/10.1038/s41388-017-0120-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng Y, Zhuang J, Ying G et al (2020) Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation 17:1–20. https://doi.org/10.1186/s12974-020-01830-4

    Article  CAS  Google Scholar 

  42. Kim DY, Kim SR, Jung UJ (2020) Myricitrin ameliorates hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet/streptozotocin-induced diabetic mice. Int J Mol Sci 21. https://doi.org/10.3390/ijms21051870

  43. Li X yan, Lu S shuang, Wang H lun et al (2018) Effects of the fenugreek extracts on high-fat diet-fed and streptozotocin-induced type 2 diabetic mice. Anim Model Exp Med 1:68–73. https://doi.org/10.1002/ame2.12004

  44. Barrière DA, Noll C, Roussy G et al (2018) Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 8. https://doi.org/10.1038/s41598-017-18896-5

  45. Preeti K, Fernandes V, Sood A et al (2023) Necrostatin-1S mitigates type-2 diabetes-associated cognitive decrement and lipotoxicity-induced neuro-microglia changes through p-RIPK-RIPK3-p-MLKL axis. Metab Brain Dis 38:1581–1612. https://doi.org/10.1007/S11011-023-01185-8

    Article  CAS  PubMed  Google Scholar 

  46. Kim JY, Lee HJ, Lee SJ et al (2017) Palmitic acid-BSA enhances amyloid-β production through GPR40-mediated dual pathways in neuronal cells: involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Sci Rep 7:1–16. https://doi.org/10.1038/s41598-017-04175-w

    Article  CAS  Google Scholar 

  47. Melo HM, Seixas da Silva GDS, Sant’Ana MR et al (2020) Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-α. Cell Rep 30:2180–2194.e8. https://doi.org/10.1016/j.celrep.2020.01.072

  48. Zang N, Cui C, Guo X et al (2022) cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 25:105145. https://doi.org/10.1016/j.isci.2022.105145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haag SM, Gulen MF, Reymond L et al (2018) Targeting STING with covalent small-molecule inhibitors. Nature 5597713(559):269–273. https://doi.org/10.1038/s41586-018-0287-8

  50. du Sert NP, Hurst V, Ahluwalia A et al (2020) The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18:1–12. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  Google Scholar 

  51. Park KA, Jin Z, Lee JY et al (2020) Long-lasting exendin-4 fusion protein improves memory deficits in high-fat diet/streptozotocin-induced diabetic mice. Pharmaceutics 12:1–18. https://doi.org/10.3390/pharmaceutics12020159

    Article  CAS  Google Scholar 

  52. Ding C, Song Z, Shen A et al (2020) Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharm Sin B 10:2272–2298. https://doi.org/10.1016/j.apsb.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao L, Xu E, Zheng R et al (2022) Traditional Chinese medicine Lingguizhugan decoction ameliorate HFD - induced hepatic - lipid deposition in mice by inhibiting STING - mediated inflammation in macrophages. Chin Med 1–16. https://doi.org/10.1186/s13020-021-00559-3

  54. Bi X, Du C, Wang X et al (2021) Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability. 2002738:1–18. https://doi.org/10.1002/advs.202002738

  55. Rom S, Zuluaga-Ramirez V, Gajghate S et al (2019) Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol 56:1883–1896. https://doi.org/10.1007/s12035-018-1195-5

    Article  CAS  PubMed  Google Scholar 

  56. Yang S, Lee DK, Shin J et al (2017) Nec- 1 alleviates cognitive impairment with reduction of A b and tau abnormalities in. 9:61–77. https://doi.org/10.15252/emmm.201606566

  57. Johnson LA, Zuloaga KL, Kugelman TL et al (2016) Amelioration of metabolic syndrome-associated cognitive impairments in mice via a reduction in dietary fat content or infusion of non-diabetic plasma. EBioMedicine 3:26–42. https://doi.org/10.1016/j.ebiom.2015.12.008

    Article  PubMed  Google Scholar 

  58. Kodali M, Attaluri S, Madhu LN et al (2021) Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 20:e13277. https://doi.org/10.1111/acel.13277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nunez J (2008) Morris water maze experiment. J Vis Exp. https://doi.org/10.3791/897

  60. Marwarha G, Claycomb K, Schommer J et al (2016) Palmitate-induced endoplasmic reticulum stress and subsequent C/EBPα homologous protein activation attenuates leptin and insulin-like growth factor 1 expression in the brain. Cell Signal 28:1789. https://doi.org/10.1016/J.CELLSIG.2016.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Urso CJ, Zhou H (2021) Palmitic acid lipotoxicity in microglia cells is ameliorated by unsaturated fatty acids. Int J Mol Sci 22:1–18. https://doi.org/10.3390/ijms22169093

    Article  CAS  Google Scholar 

  62. Hu L, Zhang S, Wen H et al (2019) Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia. PLoS ONE 14:1–18. https://doi.org/10.1371/journal.pone.0212138

    Article  CAS  Google Scholar 

  63. Khan I, Preeti K, Kumar R et al (2023) Piceatannol promotes neuroprotection by inducing mitophagy and mitobiogenesis in the experimental diabetic peripheral neuropathy and hyperglycemia-induced neurotoxicity. Int Immunopharmacol 116:109793. https://doi.org/10.1016/j.intimp.2023.109793

    Article  CAS  PubMed  Google Scholar 

  64. Khan I, Preeti K, Kumar R et al (2022) Activation of SIRT1 by silibinin improved mitochondrial health and alleviated the oxidative damage in experimental diabetic neuropathy and high glucose-mediated neurotoxicity. 0:1–17. https://doi.org/10.1080/13813455.2022.2108454

  65. Warren EB, Aicher AE, Fessel JP, Konradi C (2017) Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: implications for striatal energy metabolism. PLoS One 12. https://doi.org/10.1371/journal.pone.0190456

  66. Ouchi H, Hirokawa N, Maekawa H et al (2019) Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury article mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep 29:1261-1273.e6. https://doi.org/10.1016/j.celrep.2019.09.050

    Article  CAS  PubMed  Google Scholar 

  67. Bai J, Cervantes C, Liu J et al (2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 114:12196–12201. https://doi.org/10.1073/pnas.1708744114

  68. Fernandes V, Preeti K, Sood A et al (2023) Neuroepigenetic changes in DNA methylation affecting diabetes-induced cognitive impairment. Cell Mol Neurobiol 43:2005–2020. https://doi.org/10.1007/s10571-022-01278-5

  69. Sood A, Fernandes V, Preeti K et al (2023) Fingolimod alleviates cognitive deficit in type 2 diabetes by promoting microglial M2 polarization via the pSTAT3-jmjd3 axis. Mol Neurobiol 60:901–922. https://doi.org/10.1007/s12035-022-03120-x

    Article  CAS  PubMed  Google Scholar 

  70. De CP, Matarese G (2018) Neuropharmacology leptin and ghrelin: sewing metabolism onto neurodegeneration. Neuropharmacology 136:307–316. https://doi.org/10.1016/j.neuropharm.2017.12.025

    Article  CAS  Google Scholar 

  71. Wijesekara N, Araujo R, De FFG, Fraser PE (2018) Neuropharmacology Impaired peripheral glucose homeostasis and Alzheimer ’ s disease. Neuropharmacology 136:172–181. https://doi.org/10.1016/j.neuropharm.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  72. Duarte AI, Santos MS, Oliveira CR, Moreira PI (2018) Neuropharmacology brain insulin signalling, glucose metabolism and females ’ reproductive aging: a dangerous triad in Alzheimer’s disease. Neuropharmacology 136:223–242. https://doi.org/10.1016/j.neuropharm.2018.01.044

    Article  CAS  PubMed  Google Scholar 

  73. Vieira MNN, Lima-filho RAS, De FFG (2018) Neuropharmacology connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacology 136:160–171. https://doi.org/10.1016/j.neuropharm.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  74. Takeda S, Sato N, Uchio-Yamada K et al (2010) Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 107:7036–7041. https://doi.org/10.1073/pnas.1000645107

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jeon BT, Jeong EA, Shin HJ et al (2012) Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 61:1444–1454. https://doi.org/10.2337/DB11-1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neumann K, Rojo L, Navarrete L et al (2008) Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr Alzheimer Res 5:438–447. https://doi.org/10.2174/156720508785908919

    Article  CAS  PubMed  Google Scholar 

  77. Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156. https://doi.org/10.1212/01.wnl.0000156156.13641.ba

    Article  CAS  PubMed  Google Scholar 

  78. Riederer P, Korczyn AD, Ali SS et al (2017) The diabetic brain and cognition. J Neural Transm 124:1431–1454. https://doi.org/10.1007/s00702-017-1763-2

    Article  PubMed  Google Scholar 

  79. Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166. https://doi.org/10.1038/s41593-018-0325-8

    Article  CAS  PubMed  Google Scholar 

  80. Greenhalgh AD, David S, Bennett FC (2020) Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 21:139–152. https://doi.org/10.1038/s41583-020-0263-9

    Article  CAS  PubMed  Google Scholar 

  81. Guo Y, Gu R, Gan D et al (2020) Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Commun Signal 18:1–12. https://doi.org/10.1186/s12964-020-00637-3

    Article  CAS  Google Scholar 

  82. Sarhan J, Liu BC, Muendlein HI et al (2019) Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ 332–347. https://doi.org/10.1038/s41418-018-0122-7

  83. Yang Y, Wu M, Cao D et al (2021) ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Sci Adv 7:1–16. https://doi.org/10.1126/sciadv.abf6290

    Article  CAS  Google Scholar 

  84. Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: Role of oxidative stress. Am J Physiol-Endocrinol Metab 299. https://doi.org/10.1152/AJPENDO.00238.2010

  85. Viader A, Sasaki Y, Kim S et al (2013) Aberrant schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77:886–898. https://doi.org/10.1016/j.neuron.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:1–18. https://doi.org/10.3389/fncel.2020.00198

  87. Chang CF, Wan J, Li Q et al (2017) Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis 103:54–69. https://doi.org/10.1016/J.NBD.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang J, Zhao Y, Zhang L et al (2018) RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. 2622–2635. https://doi.org/10.1093/cercor/bhy089

  89. Sen T, Saha P, Gupta R et al (2020) Aberrant ER stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI. J Neurosci 40:424–446. https://doi.org/10.1523/JNEUROSCI.0718-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gilli F, Valentino P, Caldano M et al (2008) Expression and regulation of IFNalpha/beta receptor in IFNbeta-treated patients with multiple sclerosis. Neurology 71:1940–1947. https://doi.org/10.1212/01.WNL.0000327340.50284.8D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Department of Pharmacology and Toxicology, NIPER Hyderabad, and the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, for carrying out this work.

Funding

This work is supported by the National Institute of Pharmaceutical Education and Research, Hyderabad, and the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors take responsibility for the integrity and accuracy of this manuscript. KP, DKK, and SBS contributed to the conceptualization, designing, and seamless execution of the research; KP performed studies, evaluated data, and wrote the manuscript; AS, VF, and IK performed studies, evaluated data, and reviewed the manuscript; DKK and SBS reviewed, edited the manuscript, and supervised the research work.

Corresponding authors

Correspondence to Dharmendra Kumar Khatri or Shashi Bala Singh.

Ethics declarations

Ethics approval

This present study was conducted under the regulation of the Committee for Control and Supervision of Experiments on Animals (CCSEA) and Institutional Animal Ethical Committee (IAEC)-NIPER-Hyderabad Telangana, India, and according to Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines [50] after getting approval of protocol no NIP/10/2019/PC/343 and NIP/05/2020/PC/385.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.19 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preeti, K., Sood, A., Fernandes, V. et al. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03933-y

Keywords

Navigation