Skip to main content

Advertisement

Log in

Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

AIM2:

Absent in melanoma 2

AKI:

Acute kidney injury

ANRIL:

Antisense noncoding RNA in the INK4 locus

ASC:

Apoptosis-associated speck-like protein containing a CARD

CCI:

Chronic constriction injury

COPD:

Chronic obstructive pulmonary disease

CRNDE:

Colorectal neoplasia differentially expressed

DAMPs:

Danger-associated molecular patterns

DLX6-AS1:

Distal-less homeobox 6 antisense 1

FIRRE:

Functional intergenic repeating RNA element

GAS5:

Growth arrest-specific 5

GBA:

Glucocerebrosidase

GSDMD:

Gasdermin D

HAGLR:

HOXD antisense growth-associated long noncoding RNA

HOTAIR:

LncRNA HOX antisense intergenic RNA

HOTTIP:

HOXA transcript at the distal tip

HOXA11-AS:

Homeobox A11 antisense

HUVEC:

Human umbilical vein endothelial cell

Lfar1:

Liver-fibrosis associated lncRNA1

LRRK2:

Leucine-rich repeat kinase 2

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MDRL:

Mitochondrial dynamic-related lncRNA

Meg3:

Maternally expressed gene 3

MIAT:

Myocardial infarction-associated transcript

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NACHT:

Nucleotide-binding oligomerization domain

NEAT1:

Nuclear paraspeckle assembly transcript 1

NF-κB:

Nuclear factor-κB

NLRC4:

NOD-like receptor family-C

NLRP1:

NLR family pyrin domain containing 1

NLRs:

Nod-like receptors

NSCLC:

Non-small cell lung cancer

PAMPs:

Pattern-associated molecular patterns

PD:

Parkinson’s disease

Platr4:

Pluripotency-associated transcript 4

PVT1:

Plasmacytoma variant translocation 1

RGMB-AS1:

Repulsive guidance molecule bone morphogenetic protein coreceptor b antisense RNA 1

RMRP:

RNA component of mitochondrial RNAase P

SNHG:

Small nucleolar RNA host gene

TLR:

Toll-like receptors

UC:

Ulcerative colitis

VA-HF:

Ventricular arrhythmia associated with heart failure

XIST:

X-inactive specific transcript

ZFAS1:

Zinc finger antisense 1

References

  1. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  PubMed  CAS  Google Scholar 

  2. Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12. https://doi.org/10.1016/j.cger.2019.08.002

    Article  PubMed  Google Scholar 

  3. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z (2021) Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health 9:776847. https://doi.org/10.3389/fpubh.2021.776847

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stefanis L (2012) alpha-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Xiong Y, Dawson TM, Dawson VL (2017) Models of LRRK2-associated Parkinson’s Disease. Adv Neurobiol 14:163–191. https://doi.org/10.1007/978-3-319-49969-7_9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19. https://doi.org/10.1186/s40035-015-0042-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17(1):6–10. https://doi.org/10.1016/j.jocn.2009.05.006

    Article  PubMed  Google Scholar 

  8. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13(4):3391–3396. https://doi.org/10.3892/mmr.2016.4948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013:480739. https://doi.org/10.1155/2013/480739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xu L, He D, Bai Y (2016) Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 53(10):6709–6715. https://doi.org/10.1007/s12035-015-9593-4

    Article  PubMed  CAS  Google Scholar 

  11. Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK (2019) Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol 10:1000. https://doi.org/10.3389/fimmu.2019.01000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A, Hinkle JT, Akkentli F, Mao X, Xu E, Karuppagounder SS, Hsu ET, Kang SU, Pletnikova O, Troncoso J, Dawson VL, Dawson TM (2022) Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110(15):2422-2437 e2429. https://doi.org/10.1016/j.neuron.2022.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46. https://doi.org/10.1007/978-981-10-5203-3_1

    Article  PubMed  CAS  Google Scholar 

  14. St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31(5):239–251. https://doi.org/10.1016/j.tig.2015.03.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hombach S, Kretz M (2016) Noncoding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17. https://doi.org/10.1007/978-3-319-42059-2_1

    Article  PubMed  CAS  Google Scholar 

  16. Ma L, Bajic VB, Zhang Z (2013) On the classification of long noncoding RNAs. RNA Biol 10(6):925–933. https://doi.org/10.4161/rna.24604

    Article  PubMed  CAS  Google Scholar 

  17. Quinn JJ, Chang HY (2016) Unique features of long noncoding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  PubMed  CAS  Google Scholar 

  18. Ali T, Grote P (2020) Beyond the RNA-dependent function of lncRNA genes. eLife 9: https://doi.org/10.7554/eLife.60583

  19. Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220:2. https://doi.org/10.1083/jcb.202009045

    Article  CAS  Google Scholar 

  20. Sivagurunathan N, Ambatt ATS, Calivarathan L (2022) Role of long noncoding RNAs in the pathogenesis of Alzheimer’s and Parkinson’s diseases. Curr Aging Sci 15(2):84–96. https://doi.org/10.2174/1874609815666220126095847

    Article  PubMed  CAS  Google Scholar 

  21. Cortini F, Roma F, Villa C (2019) Emerging roles of long noncoding RNAs in the pathogenesis of Alzheimer’s disease. Ageing Res Rev 50:19–26. https://doi.org/10.1016/j.arr.2019.01.001

    Article  PubMed  CAS  Google Scholar 

  22. Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35(1):20–33. https://doi.org/10.1002/mds.27874

    Article  PubMed  CAS  Google Scholar 

  23. Yang S, Yang H, Luo Y, Deng X, Zhou Y, Hu B (2021) Long noncoding RNAs in neurodegenerative diseases. Neurochem Int 148:105096. https://doi.org/10.1016/j.neuint.2021.105096

    Article  PubMed  CAS  Google Scholar 

  24. Brahadeeswaran S, Sivagurunathan N, Calivarathan L (2022) Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Mol Neurobiol 59(4):2288–2304. https://doi.org/10.1007/s12035-021-02683-5

    Article  PubMed  CAS  Google Scholar 

  25. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687. https://doi.org/10.1038/nm.3893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278–286. https://doi.org/10.1038/nature10759

    Article  PubMed  CAS  Google Scholar 

  27. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420. https://doi.org/10.1038/nri.2016.58

    Article  PubMed  CAS  Google Scholar 

  28. He Y, Hara H, Nunez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020. https://doi.org/10.1038/cr.2016.100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Man SM, Karki R, Kanneganti TD (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75. https://doi.org/10.1111/imr.12534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22(13):1111–1129. https://doi.org/10.1089/ars.2014.5994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chevriaux A, Pilot T, Derangere V, Simonin H, Martine P, Chalmin F, Ghiringhelli F, Rebe C (2020) Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front Cell Dev Biol 8:167. https://doi.org/10.3389/fcell.2020.00167

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282–11287. https://doi.org/10.1073/pnas.1117765109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414. https://doi.org/10.1016/j.immuni.2012.01.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. https://doi.org/10.1146/annurev-immunol-031210-101405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:13. https://doi.org/10.3390/ijms20133328

    Article  CAS  Google Scholar 

  39. Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y (2020) LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ 27(1):176–191. https://doi.org/10.1038/s41418-019-0351-4

    Article  PubMed  CAS  Google Scholar 

  40. Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S (2022) Long noncoding RNA H19 promotes NLRP3-mediated pyroptosis after subarachnoid hemorrhage in rats. Transl Stroke Res. https://doi.org/10.1007/s12975-022-01104-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang P, Cao L, Zhou R, Yang X, Wu M (2019) The lncRNA NEAT1 promotes activation of inflammasomes in macrophages. Nat Commun 10(1):1495. https://doi.org/10.1038/s41467-019-09482-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang M, Zheng Y, Sun Y, Li S, Chen L, Jin X, Hou X, Liu X, Chen Q, Li J, Liu M, Zheng X, Zhang Y, Wu J, Yu B (2019) Knockdown of NEAT1 induces tolerogenic phenotype in dendritic cells by inhibiting activation of NLRP3 inflammasome. Theranostics 9(12):3425–3442. https://doi.org/10.7150/thno.33178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. An Q, Zhou Z, Xie Y, Sun Y, Zhang H, Cao Y (2021) Knockdown of long noncoding RNA NEAT1 relieves the inflammatory response of spinal cord injury through targeting miR-211-5p/MAPK1 axis. Bioengineered 12(1):2702–2712. https://doi.org/10.1080/21655979.2021.1930925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yao T, Song Y, Li S, Gu J, Yan X (2022) Inhibition of lncRNA NEAT1 protects endothelial cells against hypoxia/reoxygenation-induced NLRP3 inflammasome activation by targeting the miR-204/BRCC3 axis. Mol Med Rep 25:1. https://doi.org/10.3892/mmr.2021.12548

    Article  CAS  Google Scholar 

  45. Dai W, Wang M, Wang P, Wen J, Wang J, Cha S, Xiao X, He Y, Shu R, Bai D (2021) lncRNA NEAT1 ameliorates LPS-induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med 47(2):607–620. https://doi.org/10.3892/ijmm.2020.4827

    Article  PubMed  CAS  Google Scholar 

  46. Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, Zhang T, Zhu Y (2020) LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY) 12(11):11025–11041. https://doi.org/10.18632/aging.103314

    Article  PubMed  CAS  Google Scholar 

  47. Zhang K, Shi Z, Zhang M, Dong X, Zheng L, Li G, Han X, Yao Z, Han T, Hong W (2020) Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis. Cell Death Dis 11(2):132. https://doi.org/10.1038/s41419-020-2323-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liang J, Wang Q, Li JQ, Guo T, Yu D (2020) Long noncoding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol 325:113139. https://doi.org/10.1016/j.expneurol.2019.113139

    Article  PubMed  CAS  Google Scholar 

  49. Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, Liu W (2021) LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol 90:107141. https://doi.org/10.1016/j.intimp.2020.107141

    Article  PubMed  CAS  Google Scholar 

  50. Liao H, Zhang S, Qiao J (2020) Silencing of long noncoding RNA MEG3 alleviates lipopolysaccharide-induced acute lung injury by acting as a molecular sponge of microRNA-7b to modulate NLRP3. Aging (Albany NY) 12(20):20198–20211. https://doi.org/10.18632/aging.103752

    Article  PubMed  CAS  Google Scholar 

  51. Zou DM, Zhou SM, Li LH, Zhou JL, Tang ZM, Wang SH (2020) Knockdown of long noncoding RNAs of maternally expressed 3 alleviates hyperoxia-induced lung injury via inhibiting thioredoxin-interacting protein-mediated pyroptosis by binding to miR-18a. Am J Pathol 190(5):994–1005. https://doi.org/10.1016/j.ajpath.2019.12.013

    Article  PubMed  CAS  Google Scholar 

  52. Xue Z, Zhang Z, Liu H, Li W, Guo X, Zhang Z, Liu Y, Jia L, Li Y, Ren Y, Yang H, Zhang L, Zhang Q, Da Y, Hao J, Yao Z, Zhang R (2019) lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 26(1):130–145. https://doi.org/10.1038/s41418-018-0105-8

    Article  PubMed  CAS  Google Scholar 

  53. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y (2019) Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY) 11(18):7830–7846. https://doi.org/10.18632/aging.102291

    Article  PubMed  CAS  Google Scholar 

  54. Ma M, Pei Y, Wang X, Feng J, Zhang Y, Gao MQ (2019) LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-kappaB/NLRP3 inflammasome pathway. Cell Prolif 52(1):e12525. https://doi.org/10.1111/cpr.12525

    Article  PubMed  CAS  Google Scholar 

  55. Yu SY, Dong B, Tang L, Zhou SH (2018) LncRNA MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in ischemia-reperfusion injured heart. Int J Cardiol 254:50. https://doi.org/10.1016/j.ijcard.2017.10.071

    Article  PubMed  Google Scholar 

  56. Wang S, Lin Y, Li F, Qin Z, Zhou Z, Gao L, Yang Z, Wang Z, Wu B (2020) An NF-kappaB-driven lncRNA orchestrates colitis and circadian clock. Sci Adv 6:42. https://doi.org/10.1126/sciadv.abb5202

    Article  CAS  Google Scholar 

  57. Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH, Zhang Z (2017) LincRNA-Gm4419 knockdown ameliorates NF-kappaB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 8(2):e2583. https://doi.org/10.1038/cddis.2016.451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, Aibara D, Bonzo JA, Levi M, Waxman DJ, Gonzalez FJ (2020) Long noncoding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nat Commun 11(1):5847. https://doi.org/10.1038/s41467-020-19554-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Deng X, Guo J, Sun Z, Liu L, Zhao T, Li J, Tang G, Zhang H, Wang W, Cao S, Zhu D, Tao T, Cao G, Baryshnikov PI, Chen C, Zhao Z, Chen L, Zhang H (2020) Brucella-induced downregulation of lncRNA Gm28309 triggers macrophages inflammatory response through the miR-3068-5p/NF-kappaB pathway. Front Immunol 11:581517. https://doi.org/10.3389/fimmu.2020.581517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Luo D, Dai W, Feng X, Ding C, Shao Q, Xiao R, Zhao N, Peng W, Yang Y, Cui Y, Liu F, Qian K (2021) Suppression of lncRNA NLRP3 inhibits NLRP3-triggered inflammatory responses in early acute lung injury. Cell Death Dis 12(10):898. https://doi.org/10.1038/s41419-021-04180-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chi K, Geng X, Liu C, Zhang Y, Cui J, Cai G, Chen X, Wang F, Hong Q (2021) LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia. J Cell Mol Med 25(17):8504–8521. https://doi.org/10.1111/jcmm.16812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F, Guo Q, Zheng J (2021) Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 320(3):C355–C364. https://doi.org/10.1152/ajpcell.00403.2020

    Article  PubMed  CAS  Google Scholar 

  63. Wang J, Jiao P, Wei X, Zhou Y (2021) Silencing long noncoding RNA Kcnq1ot1 limits acute kidney injury by promoting miR-204-5p and blocking the activation of NLRP3 inflammasome. Front Physiol 12:721524. https://doi.org/10.3389/fphys.2021.721524

    Article  PubMed  PubMed Central  Google Scholar 

  64. Han Y, Huang Y, Yang Q, Jia L, Zheng Y, Li W (2022) Long noncoding RNA SNHG5 mediates periodontal inflammation through the NF-kappaB signalling pathway. J Clin Periodontol 49(10):1038–1051. https://doi.org/10.1111/jcpe.13684

    Article  PubMed  CAS  Google Scholar 

  65. Cao B, Wang T, Qu Q, Kang T, Yang Q (2018) Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s disease via regulating miR-7/NLRP3 pathway. Neuroscience 388:118–127. https://doi.org/10.1016/j.neuroscience.2018.07.019

    Article  PubMed  CAS  Google Scholar 

  66. Lin Y, Wang S, Gao L, Zhou Z, Yang Z, Lin J, Ren S, Xing H, Wu B (2021) Oscillating lncRNA Platr4 regulates NLRP3 inflammasome to ameliorate nonalcoholic steatohepatitis in mice. Theranostics 11(1):426–444. https://doi.org/10.7150/thno.50281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liu XH, Wu LM, Wang JL, Dong XH, Zhang SC, Li XH, Xu H, Liu DB, Li ZH, Liu ZM, Wu SG, Hu YW (2021) Long noncoding RNA RP11–490M8.1 inhibits lipopolysaccharide-induced pyroptosis of human umbilical vein endothelial cells via the TLR4/NF-kappaB pathway. Immunobiology 226(5):152133. https://doi.org/10.1016/j.imbio.2021.152133

    Article  PubMed  CAS  Google Scholar 

  68. Mo R, Li J, Chen Y, Ding Y (2022) lncRNA GAS5 promotes pyroptosis in COPD by functioning as a ceRNA to regulate the miR-223-3p/NLRP3 axis. Mol Med Rep 26:1. https://doi.org/10.3892/mmr.2022.12735

    Article  CAS  Google Scholar 

  69. You L, Zheng Y, Yang J, Hou Q, Wang L, Zhang Y, Zhao C, Xie R (2022) LncRNA MDRL mitigates atherosclerosis through miR-361/SQSTM1/NLRP3 signaling. Mediators Inflamm 2022:5463505. https://doi.org/10.1155/2022/5463505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liang Y, Wang B, Huang H, Wang M, Wu Q, Zhao Y, He Y (2021) Silenced SOX2-OT alleviates ventricular arrhythmia associated with heart failure by inhibiting NLRP3 expression via regulating miR-2355-3p. Immun Inflamm Dis 9(1):255–264. https://doi.org/10.1002/iid3.388

    Article  PubMed  CAS  Google Scholar 

  71. Zhang X, Huang Z, Wang Y, Wang T, Li J, Xi P (2021) Long noncoding RNA RMRP contributes to sepsis-induced acute kidney injury. Yonsei Med J 62(3):262–273. https://doi.org/10.3349/ymj.2021.62.3.262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wang Z, Kun Y, Lei Z, Dawei W, Lin P, Jibo W (2021) LncRNA MIAT downregulates IL-1beta, TNF-a to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell Cycle 20(2):194–203. https://doi.org/10.1080/15384101.2020.1867788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shen M, Pan X, Gao Y, Ye H, Zhang J, Chen Y, Pan M, Huang W, Xu X, Zhao Y, Jin L (2022) LncRNA CRNDE exacerbates IgA nephropathy progression by promoting NLRP3 inflammasome activation in macrophages. Immunol Invest 51(5):1515–1527. https://doi.org/10.1080/08820139.2021.1989461

    Article  PubMed  CAS  Google Scholar 

  74. Cao H, Han X, Jia Y, Zhang B (2021) Inhibition of long noncoding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-kappaB axis. Aging (Albany NY) 13(8):11455–11469. https://doi.org/10.18632/aging.202837

    Article  PubMed  CAS  Google Scholar 

  75. Zhang Q, Zhou L, Xie H, Zhang H, Gao X (2021) HAGLR aggravates neuropathic pain and promotes inflammatory response and apoptosis of lipopolysaccharide-treated SH-SY5Y cells by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome. Neurochem Int 145:105001. https://doi.org/10.1016/j.neuint.2021.105001

    Article  PubMed  CAS  Google Scholar 

  76. Hu J, Wu H, Wang D, Yang Z, Dong J (2019) LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie 157:102–110. https://doi.org/10.1016/j.biochi.2018.10.011

    Article  PubMed  CAS  Google Scholar 

  77. Zang Y, Zhou X, Wang Q, Li X, Huang H (2018) LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells. Biochem Biophys Res Commun 501(1):131–138. https://doi.org/10.1016/j.bbrc.2018.04.194

    Article  PubMed  CAS  Google Scholar 

  78. Janni A, Gattuccio F, Porcelli P, Morici V, Gabrielli M, Romano V (1977) Correlation between pituitary gonadotropin response to GnRH and testicular histology in subjects suffering from dyspermia. Acta Eur Fertil 8(2):143–154

    PubMed  CAS  Google Scholar 

  79. Xu Z, Xi K (2019) LncRNA RGMB-AS1 promotes laryngeal squamous cell carcinoma cells progression via sponging miR-22/NLRP3 axis. Biomed Pharmacother 118:109222. https://doi.org/10.1016/j.biopha.2019.109222

    Article  PubMed  CAS  Google Scholar 

  80. Mi L, Min X, Chai Y, Zhang J, Chen X (2022) NLRP1 inflammasomes: a potential target for the treatment of several types of brain injury. Front Immunol 13:863774. https://doi.org/10.3389/fimmu.2022.863774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vontell RT, de Rivero Vaccari JP, Sun X, Gultekin SH, Bramlett HM, Dietrich WD, Keane RW (2023) Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer’s disease. Brain Pathol 33(4):e13142. https://doi.org/10.1111/bpa.13142

    Article  PubMed  CAS  Google Scholar 

  82. Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. Embo Mol Med 11:6. https://doi.org/10.15252/emmm.201810248

    Article  CAS  Google Scholar 

  83. Feng X, Zhan F, Luo D, Hu J, Wei G, Hua F, Xu G (2021) LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun 98:283–298. https://doi.org/10.1016/j.bbi.2021.08.230

    Article  PubMed  CAS  Google Scholar 

  84. Song A, Yang Y, He H, Sun J, Chang Q, Xue Q (2021) Inhibition of long noncoding RNA KCNQ1OT1 attenuates neuroinflammation and neuronal apoptosis through regulating NLRP3 expression via sponging miR-30e-3p. J Inflamm Res 14:1731–1742. https://doi.org/10.2147/JIR.S291274

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gong H, Wan X, Zhang Y, Liang S (2021) Downregulation of HOTAIR reduces neuronal pyroptosis by targeting miR-455-3p/NLRP1 axis in propofol-treated neurons in vitro. Neurochem Res 46(5):1141–1150. https://doi.org/10.1007/s11064-021-03249-6

    Article  PubMed  CAS  Google Scholar 

  86. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang J, Zhao J, Hu P, Gao L, Tian S, He Z (2022) Long noncoding RNA HOTAIR in central nervous system disorders: new insights in pathogenesis, diagnosis, and therapeutic potential. Front Mol Neurosci 15:949095. https://doi.org/10.3389/fnmol.2022.949095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xiao X, Tan Z, Jia M, Zhou X, Wu K, Ding Y, Li W (2021) Long noncoding RNA SNHG1 knockdown ameliorates apoptosis, oxidative stress and inflammation in models of Parkinson’s disease by inhibiting the miR-125b-5p/MAPK1 axis. Neuropsychiatr Dis Treat 17:1153–1163. https://doi.org/10.2147/NDT.S286778

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lang Y, Zhang H, Yu H, Li Y, Liu X, Li M (2022) Long noncoding RNA myocardial infarction-associated transcript promotes 1-Methyl-4-phenylpyridinium ion-induced neuronal inflammation and oxidative stress in Parkinson’s disease through regulating microRNA-221-3p/ transforming growth factor /nuclear factor E2-related factor 2 axis. Bioengineered 13(1):930–940. https://doi.org/10.1080/21655979.2021.2015527

    Article  PubMed  CAS  Google Scholar 

  90. Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J (2020) Long noncoding RNA NORAD functions as a microRNA-204-5p sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB Life 72(9):2045–2055. https://doi.org/10.1002/iub.2344

    Article  PubMed  CAS  Google Scholar 

  91. Kopp F, Elguindy MM, Yalvac ME, Zhang H, Chen B, Gillett FA, Lee S, Sivakumar S, Yu H, Xie Y, Mishra P, Sahenk Z, Mendell JT (2019) PUMILIO hyperactivity drives premature aging of Norad-deficient mice. Elife 8. https://doi.org/10.7554/eLife.42650

  92. Lyu Y, Bai L, Qin C (2019) Long noncoding RNAs in neurodevelopment and Parkinson’s disease. Animal Model Exp Med 2(4):239–251. https://doi.org/10.1002/ame2.12093

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ma X, Wang Y, Yin H, Hua L, Zhang X, Xiao J, Yuan Q, Wang S, Liu Y, Zhang S, Wang Y (2021) Down-regulated long noncoding RNA RMST ameliorates dopaminergic neuron damage in Parkinson’s disease rats via regulation of TLR/NF-kappaB signaling pathway. Brain Res Bull 174:22–30. https://doi.org/10.1016/j.brainresbull.2021.04.026

    Article  PubMed  CAS  Google Scholar 

  94. Cai LJ, Tu L, Huang XM, Huang J, Qiu N, Xie GH, Liao JX, Du W, Zhang YY, Tian JY (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):130. https://doi.org/10.1186/s13041-020-00656-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Xu X, Zhang Y (2022) Regulation of oxidative stress by long noncoding RNAs in central nervous system disorders. Front Mol Neurosci 15:931704. https://doi.org/10.3389/fnmol.2022.931704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Elkouris M, Kouroupi G, Vourvoukelis A, Papagiannakis N, Kaltezioti V, Matsas R, Stefanis L, Xilouri M, Politis PK (2019) Long noncoding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci 13:58. https://doi.org/10.3389/fncel.2019.00058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long noncoding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329–338. https://doi.org/10.1007/s10571-016-0373-0

    Article  PubMed  CAS  Google Scholar 

  98. Lun P, Ji T, Wan DH, Liu X, Chen XD, Yu S, Sun P (2022) HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson’s disease cell and mouse models. Neural Regen Res 17(4):887–897. https://doi.org/10.4103/1673-5374.322475

    Article  PubMed  CAS  Google Scholar 

  99. Zhang Q, Huang XM, Liao JX, Dong YK, Zhu JL, He CC, Huang J, Tang YW, Wu D, Tian JY (2021) LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell Mol Neurobiol 41(8):1773–1786. https://doi.org/10.1007/s10571-020-00946-8

    Article  PubMed  CAS  Google Scholar 

  100. Sun Q, Zhang Y, Wang S, Yang F, Cai H, Xing Y, Chen Z, Chen J (2021) NEAT1 decreasing suppresses Parkinson’s disease progression via acting as miR-1301-3p sponge. J Mol Neurosci 71(2):369–378. https://doi.org/10.1007/s12031-020-01660-2

    Article  PubMed  CAS  Google Scholar 

  101. He J, Xuan X, Jiang M, Li J, Li N, Nie T (2021) Long noncoding RNA SNHG1 relieves microglia activation by downregulating miR-329-3p expression in an in vitro model of cerebral infarction. Exp Ther Med 22(4):1148. https://doi.org/10.3892/etm.2021.10581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Xu W, Zhang L, Geng Y, Liu Y, Zhang N (2020) Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int Immunopharmacol 85:106614. https://doi.org/10.1016/j.intimp.2020.106614

    Article  PubMed  CAS  Google Scholar 

  103. Zhu Z, Huang P, Sun R, Li X, Li W, Gong W (2022) A novel long-noncoding RNA LncZFAS1 prevents MPP(+)-induced neuroinflammation through MIB1 activation. Mol Neurobiol 59(2):778–799. https://doi.org/10.1007/s12035-021-02619-z

    Article  PubMed  CAS  Google Scholar 

  104. Liu L, Zhou T, Li T, Liang Z, Luo X (2022) LncRNA DLX6-AS1 promotes microglial inflammatory response in Parkinson’s disease by regulating the miR-223-3p/NRP1 axis. Behav Brain Res 431:113923. https://doi.org/10.1016/j.bbr.2022.113923

    Article  PubMed  CAS  Google Scholar 

  105. Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinsons Dis 2020:5374307. https://doi.org/10.1155/2020/5374307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wang W, Yang N, Yang YH, Wen R, Liu CF, Zhang TN (2021) Noncoding RNAs: master Regulators of inflammasomes in inflammatory diseases. J Inflamm Res 14:5023–5050. https://doi.org/10.2147/JIR.S332840

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Science & Engineering Research Board and the Council of Scientific and Industrial Research, Govt. of India, and the Council of Scientific and Industrial Research, Govt. of India, for a Junior Research Fellowship. CL acknowledges the Science & Engineering Research Board, Govt. of India, for Extra Mural Research Grant [EMR/2017/002793], the Indian Council of Medical Research, Govt. of India, for Extra Mural Research Grant [File Number 36/14/2020/TOX/BMS], and UGC for Startup Research Grant. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Author information

Authors and Affiliations

Authors

Contributions

NS, MPR, HA, and LC developed the concept, designed, and supported in collecting references and writing the manuscript.

Corresponding author

Correspondence to Latchoumycandane Calivarathan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All contributing authors agree to the publication of this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Unraveling the role of lncRNAs in the pathogenesis of Parkinson’s disease

• Significance of inflammasome activation by lncRNAs in Parkinson’s disease.

• Understanding the mechanism of lncRNAs in regulating inflammasome-mediated neuroinflammation in Parkinson’s disease.

• A novel insight on lncRNAs for targeted therapies for Parkinson’s disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivagurunathan, N., Rahamathulla, M.P., Al-Dossary, H. et al. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson’s Disease. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03809-7

Keywords

Navigation