Skip to main content

Advertisement

Log in

Asiaticoside Attenuates Blood–Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The blood–spinal cord barrier (BSCB) plays a vital role in the recovery of spinal cord function after spinal cord injury (SCI). Pericytes, pluripotent members of the neurovascular unit (NVU), receive signals from neighboring cells and are critical for maintaining CNS function. Therapeutic targets for the BSCB include endothelial cells (ECs) and glial cells, but few drugs target pericytes. This study was designed to explore whether asiaticoside has a positively effect on pericytes and the integrity of the BSCB. In this study, we found that asiaticoside could inhibit the loss of junction proteins just 1 day after SCI in vivo, but our in vitro study showed no significant differences in the expression of endothelial junction proteins between the control and asiaticoside treatment groups. We also found that asiaticoside could inhibit endoplasmic reticulum (ER) stress and pericyte apoptosis, which might be associated with the inhibition of junction protein reduction in ECs. Thus, we investigated the interactions between pericytes and ECs. Our results showed that asiaticoside could decrease the release of matrix metalloproteinase (MMP)-9 in pericytes and therefore upregulate the expression of junction proteins in ECs. Furthermore, the protective effect of asiaticoside on pericytes is related to the inhibition of ER stress via the MAPK signaling pathway. Taken together, our results demonstrate that asiaticoside treatment inhibits BSCB disruption and enhances functional recovery after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting the findings are available from the corresponding author upon reasonable request.

References

  1. Long HQ, Li GS, Cheng X, Xu JH, Li FB (2015) Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury. Chin J Traumatol 18(5):293–295. https://doi.org/10.1016/j.cjtee.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Yao Y, Xu J, Yu T, Chen Z, Xiao Z, Wang J, Hu Y, Wu Y et al (2018) Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Theranostics 8(15):4181–4198. https://doi.org/10.7150/thno.25707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu J, Yu Q, Xie L, Zhu H (2016) Targeting the blood-spinal cord barrier: a therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 158:1–6. https://doi.org/10.1016/j.lfs.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  4. van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89. https://doi.org/10.1016/j.ijcard.2015.03.258

    Article  PubMed  Google Scholar 

  5. Pisani F, Castagnola V, Simone L, Loiacono F, Svelto M, Benfenati F (2022) Role of pericytes in blood-brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 13(7):582. https://doi.org/10.1038/s41419-022-05025-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jamieson JJ, Lin Y, Malloy N, Soto D, Searson PC, Gerecht S (2022) Hypoxia-induced blood-brain barrier dysfunction is prevented by pericyte-conditioned media via attenuated actomyosin contractility and claudin-5 stabilization. FASEB J 36(5):e22331. https://doi.org/10.1096/fj.202200010RR

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, Yao Y, Duan R et al (2019) Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 13:209. https://doi.org/10.3389/fnins.2019.00209

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoshikawa M, Aizawa S, Oppenheim RW, Milligan C (2022) Neurovascular unit pathology is observed very early in disease progression in the mutant SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Exp Neurol 353:114084. https://doi.org/10.1016/j.expneurol.2022.114084

    Article  CAS  PubMed  Google Scholar 

  9. Sauer RS, Kirchner J, Yang S, Hu L, Leinders M, Sommer C, Brack A, Rittner HL (2017) Blood-spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Ann N Y Acad Sci 1405(1):71–88. https://doi.org/10.1111/nyas.13436

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Spitzer D, Guerit S, Puetz T, Khel MI, Armbrust M, Dunst M, Macas J, Zinke J et al (2022) Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol 144(2):305–337. https://doi.org/10.1007/s00401-022-02452-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Li M, Ge Y, Chen J, Ma J, Wang C, Sun M, Wang L et al (2022) beta-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci 12(1):69. https://doi.org/10.1186/s13578-022-00807-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jing Y, Bai F, Wang L, Yang D, Yan Y, Wang Q, Zhu Y, Yu Y et al (2022) Fecal microbiota transplantation exerts neuroprotective effects in a mouse spinal cord injury model by modulating the microenvironment at the lesion site. Microbiol Spectr 10(3):e0017722. https://doi.org/10.1128/spectrum.00177-22

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Wu Y, Han W, Li J, Xu K, Li Z, Wang Q, Xu K et al (2018) Hydrogen sulfide ameliorates blood-spinal cord barrier disruption and improves functional recovery by inhibiting endoplasmic reticulum stress-dependent autophagy. Front Pharmacol 9:858. https://doi.org/10.3389/fphar.2018.00858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. ElAli A, Theriault P, Rivest S (2014) The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci 15(4):6453–6474. https://doi.org/10.3390/ijms15046453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Machida T, Takata F, Matsumoto J, Takenoshita H, Kimura I, Yamauchi A, Dohgu S, Kataoka Y (2015) Brain pericytes are the most thrombin-sensitive matrix metalloproteinase-9-releasing cell type constituting the blood-brain barrier in vitro. Neurosci Lett 599:109–114. https://doi.org/10.1016/j.neulet.2015.05.028

    Article  CAS  PubMed  Google Scholar 

  16. Huang C, Zhang W, Chu F, Qian H, Wang Y, Qi F, Ye M, Zhou J et al (2021) Patchouli alcohol improves the integrity of the blood-spinal cord barrier by inhibiting endoplasmic reticulum stress through the Akt/CHOP/Caspase-3 pathway following spinal cord injury. Front Cell Dev Biol 9:693533. https://doi.org/10.3389/fcell.2021.693533

    Article  PubMed  PubMed Central  Google Scholar 

  17. Costa CAD, Manaa WE, Duplan E, Checler F (2020) The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells 9(11). https://doi.org/10.3390/cells9112495

  18. Ikesugi K, Mulhern ML, Madson CJ, Hosoya K, Terasaki T, Kador PF, Shinohara T (2006) Induction of endoplasmic reticulum stress in retinal pericytes by glucose deprivation. Curr Eye Res 31(11):947–953. https://doi.org/10.1080/02713680600966785

    Article  CAS  PubMed  Google Scholar 

  19. Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J et al (2016) Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia 59(10):2251–2261. https://doi.org/10.1007/s00125-016-4058-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Cheng Z, Chen X, Yang D, Li H, Deng Y (2022) Purpurogallin improves neurological functions of cerebral ischemia and reperfusion mice by inhibiting endoplasmic reticulum stress and neuroinflammation. Int Immunopharmacol 111:109057. https://doi.org/10.1016/j.intimp.2022.109057

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Zhang X, Xing R, Qi F, Dong J, Li D, Tian X, Yu B et al (2021) Syringic acid demonstrates promising protective effect against tau fibrillization and cytotoxicity through regulation of endoplasmic reticulum stress-mediated pathway as a prelude to Alzheimer's disease. Int J Biol Macromol 192:491–497. https://doi.org/10.1016/j.ijbiomac.2021.09.173

    Article  CAS  PubMed  Google Scholar 

  22. Feliziani C, Fernandez M, Quassollo G, Holstein D, Bairo SM, Paton JC, Paton AW, de Batista J et al (2022) Ca(2+) signalling system initiated by endoplasmic reticulum stress stimulates PERK activation. Cell Calcium 106:102622. https://doi.org/10.1016/j.ceca.2022.102622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song D, Jiang X, Liu Y, Sun Y, Cao S, Zhang Z (2018) Asiaticoside attenuates cell growth inhibition and apoptosis induced by Abeta1-42 via inhibiting the TLR4/NF-kappaB signaling pathway in human brain microvascular endothelial cells. Front Pharmacol 928. https://doi.org/10.3389/fphar.2018.00028

  24. Zhou Y, Wang S, Zhao J, Fang P (2020) Asiaticoside attenuates neonatal hypoxic-ischemic brain damage through inhibiting TLR4/NF-kappaB/STAT3 pathway. Ann Transl Med 8(10):641. https://doi.org/10.21037/atm-20-3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng X, Yu J, Liu P, Liu Y, Zeng T, Li B (2022) Asiaticoside alleviates cardiomyocyte apoptosis and oxidative stress in myocardial ischemia/reperfusion injury via activating the PI3K-AKT-GSK3beta pathway in vivo and in vitro. Ann Transl Med 10(2):69. https://doi.org/10.21037/atm-21-6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seon GM, Lee MH, Koo MA, Hong SH, Park YJ, Jeong HK, Kwon BJ, Kim D et al (2021) Asiaticoside and polylysine-releasing collagen complex for effectively reducing initial inflammatory response using inflamed induced in vitro model. Mater Sci Eng C Mater Biol Appl 121:111837. https://doi.org/10.1016/j.msec.2020.111837

    Article  CAS  PubMed  Google Scholar 

  27. Fong LY, Ng CT, Zakaria ZA, Baharuldin MT, Arifah AK, Hakim MN, Zuraini A (2015) Asiaticoside inhibits TNF-alpha-induced endothelial hyperpermeability of human aortic endothelial cells. Phytother Res 29(10):1501–1508. https://doi.org/10.1002/ptr.5404

    Article  CAS  PubMed  Google Scholar 

  28. Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H et al (2021) AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 12(3):274. https://doi.org/10.1038/s41419-021-03546-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JY, Kim HS, Choi HY, Oh TH, Ju BG, Yune TY (2012) Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem 121(5):818–829. https://doi.org/10.1111/j.1471-4159.2012.07731.x

    Article  CAS  PubMed  Google Scholar 

  30. Jo DH, Kim JH, Heo JI, Kim JH, Cho CH (2013) Interaction between pericytes and endothelial cells leads to formation of tight junction in hyaloid vessels. Mol Cells 36(5):465–471. https://doi.org/10.1007/s10059-013-0228-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia M, Zhang Y, Wu H, Zhang Q, Liu Q, Li G, Zhao T, Liu X et al (2022) Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-kappaB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury. Int Immunopharmacol 111:109120. https://doi.org/10.1016/j.intimp.2022.109120

    Article  CAS  PubMed  Google Scholar 

  32. Bo N, Yilin H, Chaoyue Y, Lu L, Yuan Y (2020) Acrylamide induces NLRP3 inflammasome activation via oxidative stress- and endoplasmic reticulum stress-mediated MAPK pathway in HepG2 cells. Food Chem Toxicol 145:111679. https://doi.org/10.1016/j.fct.2020.111679

    Article  CAS  PubMed  Google Scholar 

  33. Cai L, Gao L, Zhang G, Zeng H, Wu X, Tan X, Qian C, Chen G (2022) DJ-1 alleviates neuroinflammation and the related blood-spinal cord barrier destruction by suppressing NLRP3 inflammasome activation via SOCS1/Rac1/ROS pathway in a rat model of traumatic spinal cord injury. J Clin Med 11(13). https://doi.org/10.3390/jcm11133716

  34. Sun T, Liu B, Li P (2015) Nerve protective effect of asiaticoside against ischemia-hypoxia in cultured rat cortex neurons. Med Sci Monit 21:3036–3041. https://doi.org/10.12659/MSM.894024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sampath U, Janardhanam VA (2013) Asiaticoside, a trisaccaride triterpene induces biochemical and molecular variations in brain of mice with parkinsonism. Transl Neurodegener 2(1):23. https://doi.org/10.1186/2047-9158-2-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Torbey MT (2020) Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr Neuropharmacol 18(12):1250–1265. https://doi.org/10.2174/1570159X18666200720173316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV (2012) Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32(10):1841–1852. https://doi.org/10.1038/jcbfm.2012.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21(19):7724–7732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang D, Tang Q, Zheng G, Wang C, Zhou Y, Wu Y, Xuan J, Tian N et al (2017) Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation. J Cell Mol Med 21(12):3322–3336. https://doi.org/10.1111/jcmm.13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee JY, Kim HS, Choi HY, Oh TH, Yune TY (2012) Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood-spinal cord barrier after spinal cord injury. Brain 135(Pt 8):2375–2389. https://doi.org/10.1093/brain/aws171

    Article  PubMed  Google Scholar 

  41. Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H et al (2011) Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106. https://doi.org/10.1186/1742-2094-8-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S et al (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217(2):388–399. https://doi.org/10.1002/jcp.21508

    Article  CAS  PubMed  Google Scholar 

  43. Thanabalasundaram G, Pieper C, Lischper M, Galla HJ (2010) Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 1347:1–10. https://doi.org/10.1016/j.brainres.2010.05.096

    Article  CAS  PubMed  Google Scholar 

  44. Obed C, Wu M, Chen Y, An R, Cai H, Luo Q, Yu L, Wang J et al (2022) Toxoplasma gondii dense granule protein 3 promotes endoplasmic reticulum stress-induced apoptosis by activating the PERK pathway. Parasit Vectors 15(1):276. https://doi.org/10.1186/s13071-022-05394-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S et al (2019) Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 40:643–654. https://doi.org/10.1016/j.ebiom.2018.12.059

    Article  PubMed  PubMed Central  Google Scholar 

  46. Acioglu C, Mirabelli E, Baykal AT, Ni L, Ratnayake A, Heary RF, Elkabes S (2016) Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: direct versus astrocyte-mediated mechanisms. Brain Behav Immun 56:310–324. https://doi.org/10.1016/j.bbi.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Li HZ, Gong X, Luo FL, Wang B, Hu N, Wang CD, Zhang Z et al (2010) Protective effects of Asiaticoside on acute liver injury induced by lipopolysaccharide/D-galactosamine in mice. Phytomedicine 17(10):811–819. https://doi.org/10.1016/j.phymed.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  48. Chen S, Yin ZJ, Jiang C, Ma ZQ, Fu Q, Qu R, Ma SP (2014) Asiaticoside attenuates memory impairment induced by transient cerebral ischemia-reperfusion in mice through anti-inflammatory mechanism. Pharmacol Biochem Behav 122:7–15. https://doi.org/10.1016/j.pbb.2014.03.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the AJE editorial team ("http://www.aje.cn") for language editing services.

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 81403229).

Author information

Authors and Affiliations

Authors

Contributions

Zhenxin Hu, Tingting Wu, and Xiliang Tian designed the study. Ziheng Zhou, Qiyue Chen, Hanbing Yao, Mengchu Ji, and Ge Shen prepared materials, implemented the molecular biology experiment, and collected data. Chengge Shi, Chenling Dong, Zhixian Huang, and Nizhou Jian processed the data. Zhenxin Hu, Tingting Wu, and Ziheng Zhou composed the draft manuscript. Yu Zhang and Zhenxin Hu implemented the molecular biology experiment, processed the data, and revised the manuscript. Nan Han and Xiliang Tian revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nan Han or Xiliang Tian.

Ethics declarations

Ethics Approval

All animal experiments were performed in accordance with Institutional Animal Care and Use committee guidelines and approved protocols at Dalian Medical University.

Consent to Participate

Not applicable

Consent for Publication

All authors have agreed to publish this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wu, T., Zhou, Z. et al. Asiaticoside Attenuates Blood–Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury. Mol Neurobiol 61, 678–692 (2024). https://doi.org/10.1007/s12035-023-03605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03605-3

Keywords

Navigation