Skip to main content

Advertisement

Log in

MiR-26b-3p Promotes Intestinal Motility Disorder by Targeting FZD10 to Inhibit GSK3β/β-Catenin Signaling and Induce Enteric Glial Cell Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Enteric glial cells (EGCs) are the major component of the enteric nervous system and affect the pathophysiological process of intestinal motility dysfunction. MicroRNAs (miRNAs) play an important role in regulating gastrointestinal homeostasis. However, the mechanism of miRNA-mediated regulation of EGCs in intestinal dysmotility remains unclear. In this study, we investigated the effect of EGC apoptosis on intestinal dysmotility, and the effect of miR-26b-3p on EGC proliferation and apoptosis in vivo and in vitro. A loperamide hydrochloride (Lop)–induced constipated mouse model and an in vitro culture system of rat EGCs were established. The transcriptome was used to predict the differentially expressed gene miR-26b-3p and the target gene Frizzled 10 (FZD10), and their targeting binding relationship was verified by luciferase. EGCs were transfected with miR-26b-3p mimic or antagomir, and the FZD10 expression was down-regulated by siRNA. Immunofluorescence and flow cytometry were used to detect EGC apoptosis. MiR-26b-3p and FZD10 expressions were examined using quantitative real-time PCR (qRT-PCR). The CCK-8 assay was used to detect EGC proliferation. The protein levels were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). The results showed that miR-26b-3p was up-regulated in the Lop group, whereas FZD10 was down-regulated, and EGC apoptosis was increased in the colon of intestinal dysmotility mice. FZD10 down-regulation and miR-26b-3p mimic significantly increased glycogen synthase kinase-3β phosphorylation (p-GSK3β) levels, decreased β-catenin expression, and promoted EGC apoptosis. MiR-26b-3p antagomir alleviated intestinal dysmotility, promoted EGC increased activity of EGCs, and reduced EGC apoptosis in vivo. In conclusion, this study indicated that miR-26b-3p promotes intestinal motility disorders by targeting FZD10 to block GSK3β/β-catenin signaling and induces apoptosis in EGCs. Our results provide a new research target for the treatment and intervention of intestinal dysmotility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BDNF:

Brain-derived neurotrophic factor

DEMs:

Differentially expressed miRNAs

EGCs:

Enteric glial cells

ELISA:

Enzyme-linked immunosorbent assay

FZD10:

Frizzled 10

GSK3:

Glycogen synthase kinase 3

GDNF:

Glial cell–derived neurotrophic factor

GSNO:

S-Nitrosoglutathione

GFAP:

Glial fibrillary acidic protein

Lop:

Loperamide hydrochloride

miRNAs:

MicroRNAs

NGF:

Nerve growth factor

p-GSK3β:

Glycogen synthase kinase-3β phosphorylation

qRT-PCR:

Quantitative real-time PCR

S100B:

S100B protein

References

  1. Schneider S, Wright CM, Heuckeroth RO (2019) Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annu Rev Physiol 81:235–259. https://doi.org/10.1146/annurev-physiol-021317-121515

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Yang J (2022) Enteric glial cells in immunological disorders of the gut. Front Cell Neurosci 16:895871. https://doi.org/10.3389/fncel.2022.895871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacEachern SJ, Patel BA, Keenan CM, Dicay M, Chapman K, McCafferty DM, Savidge TC, Beck PL et al (2015) Inhibiting inducible nitric oxide synthase in enteric glia restores electrogenic ion transport in mice with colitis. Gastroenterology 149(2):445-455.e443. https://doi.org/10.1053/j.gastro.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  4. Hu S, Zhao ZK, Liu R, Wang HB, Gu CY, Luo HM, Wang H, Du MH et al (2015) Electroacupuncture activates enteric glial cells and protects the gut barrier in hemorrhaged rats. World J Gastroenterol 21(5):1468–1478. https://doi.org/10.3748/wjg.v21.i5.1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao M, Rastelli D, Dong L, Chiu S, Setlik W, Gershon MD, Corfas G (2017) Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153(4):1068-1081.e1067. https://doi.org/10.1053/j.gastro.2017.07.002

    Article  PubMed  Google Scholar 

  6. Kermarrec L, Durand T, Neunlist M, Naveilhan P, Neveu I (2016) Enteric glial cells have specific immunosuppressive properties. J Neuroimmunol 295–296:79–83. https://doi.org/10.1016/j.jneuroim.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Wang XM, Lv LX, Qin YS, Zhang YZ, Yang N, Wu S, Xia XW, Yang H et al (2022) Ji-Chuan decoction ameliorates slow transit constipation via regulation of intestinal glial cell apoptosis. World J Gastroenterol 28(34):5007–5022. https://doi.org/10.3748/wjg.v28.i34.5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Fisogni S, Antonelli E, Corazzi N, Salerni B (2009) Enteric neuroglial apoptosis in inflammatory bowel diseases. J Crohns Colitis 3(4):264–270. https://doi.org/10.1016/j.crohns.2009.06.004

    Article  PubMed  Google Scholar 

  9. Kim YT, Hur EM, Snider WD, Zhou FQ (2011) Role of GSK3 signaling in neuronal morphogenesis. Front Mol Neurosci 4:48. https://doi.org/10.3389/fnmol.2011.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551. https://doi.org/10.1038/nrn2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sutherland C (2011) What are the bona fide GSK3 substrates? Int J Alzheimers Dis 2011:505607. https://doi.org/10.4061/2011/505607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dorfman T, Pollak Y, Sohotnik R, Coran AG, Bejar J, Sukhotnik I (2015) Enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation. J Endocrinol 226(3):135–143. https://doi.org/10.1530/JOE-14-0725

    Article  CAS  PubMed  Google Scholar 

  13. Li B, Lee C, Cadete M, Zhu H, Koike Y, Hock A, Wu RY, Botts SR et al (2019) Impaired Wnt/β-catenin pathway leads to dysfunction of intestinal regeneration during necrotizing enterocolitis. Cell Death Dis 10(10):743. https://doi.org/10.1038/s41419-019-1987-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  15. Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang C et al (2012) MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol 40(4):1162–1170. https://doi.org/10.3892/ijo.2011.1322

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Q, Verne GN (2011) miRNA-based therapies for the irritable bowel syndrome. Expert Opin Biol Ther 11(8):991–995. https://doi.org/10.1517/14712598.2011.577060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao X, Mao X, Chen D, Yu B, He J, Yan H, Wang J (2022) miRNAs can affect intestinal epithelial barrier in inflammatory bowel disease. Front Immunol 13:868229. https://doi.org/10.3389/fimmu.2022.868229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhi X, Tao J, Li Z, Jiang B, Feng J, Yang L, Xu H, Xu Z (2014) MiR-874 promotes intestinal barrier dysfunction through targeting AQP3 following intestinal ischemic injury. FEBS Lett 588(5):757–763. https://doi.org/10.1016/j.febslet.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  19. Chao G, Wang Y, Zhang S, Yang W, Ni Z, Zheng X (2017) MicroRNA-29α increased the intestinal membrane permeability of colonic epithelial cells in irritable bowel syndrome rats. Oncotarget 8(49):85828–85837. https://doi.org/10.18632/oncotarget.20687

    Article  PubMed  PubMed Central  Google Scholar 

  20. Geng F, Lu GF, Ji MH, Kong DY, Wang SY, Tian H, Xie ZM, Pan M et al (2019) MicroRNA-26b-3p/ANTXR1 signaling modulates proliferation, migration, and apoptosis of glioma. Am J Transl Res 11(12):7568–7578

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koike J, Takagi A, Miwa T, Hirai M, Terada M, Katoh M (1999) Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family. Biochem Biophys Res Commun 262(1):39–43. https://doi.org/10.1006/bbrc.1999.1161

    Article  CAS  PubMed  Google Scholar 

  22. Xavier CP, Melikova M, Chuman Y, Uren A, Baljinnyam B, Rubin JS (2014) Secreted Frizzled-related protein potentiation versus inhibition of Wnt3α/β-catenin signaling. Cell Signal 26(1):94–101. https://doi.org/10.1016/j.cellsig.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Q, Xing F, Tao Y, Liu H, Huang K, Peng Y, Feng N, Liu C (2020) Xiaozhang Tie improves intestinal motility in rats with cirrhotic ascites by regulating the stem cell factor/c-kit pathway in interstitial cells of Cajal. Front Pharmacol 11:1. https://doi.org/10.3389/fphar.2020.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen JD, Yin J, Wei W (2017) Electrical therapies for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol 11(5):407–418. https://doi.org/10.1080/17474124.2017.1298441

    Article  CAS  PubMed  Google Scholar 

  25. Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL (2016) Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis 22(2):433–449. https://doi.org/10.1097/MIB.0000000000000667

    Article  PubMed  Google Scholar 

  26. Zhan Y, Wen Y, Du LJ, Wang XX, Tang SY, Kong PF, Huang WG, Tang XG (2022) Effects of Maren pills on the intestinal microflora and short-chain fatty acid profile in drug-induced slow transit constipation model rats. Front Pharmacol 13:804723. https://doi.org/10.3389/fphar.2022.804723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bassotti G, Villanacci V (2011) Can “functional” constipation be considered as a form of enteric neuro-gliopathy? Glia 59(3):345–350. https://doi.org/10.1002/glia.21115

    Article  PubMed  Google Scholar 

  28. Brenner M, Messing A (2021) Regulation of GFAP expression. ASN Neuro 13:1–32. https://doi.org/10.1177/1759091420981206

    Article  CAS  Google Scholar 

  29. Robinson AM, Stojanovska V, Rahman AA, McQuade RM, Senior PV, Nurgali K (2016) Effects of oxaliplatin treatment on the enteric glial cells and neurons in the mouse ileum. J Histochem Cytochem 64(9):530–545. https://doi.org/10.1369/0022155416656842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6(5):331–341. https://doi.org/10.14336/AD.2015.0825

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yao L, Lu P, Ling EA (2016) Melatonin suppresses toll like receptor 4-dependent caspase-3 signaling activation coupled with reduced production of proinflammatory mediators in hypoxic microglia. PLoS One 11(11):e0166010. https://doi.org/10.1371/journal.pone.0166010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe IN, Boyer JL, Flavell RA (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci U S A 95(23):13618–13623. https://doi.org/10.1073/pnas.95.23.13618

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alrefaei AF, Munsterberg AE, Wheeler GN (2020) FZD10 regulates cell proliferation and mediates Wnt1 induced neurogenesis in the developing spinal cord. PLoS One 15(6):e0219721. https://doi.org/10.1371/journal.pone.0219721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan Y, Li Y, Hu C, Gu X, Liu J, Hu YA, Yang Y, Wei Y et al (2009) Expression of Frizzled10 in mouse central nervous system. Gene Expr Patterns 9(3):173–177. https://doi.org/10.1016/j.gep.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, Ding H (2018) Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnol 16(1):98. https://doi.org/10.1186/s12951-018-0411-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Youth Program of National Natural Science Foundation of China (No. 82004173), the National Natural Science Foundation of China (No. 82074429), the Science and technology Research Special project of Sichuan provincial Administration of Traditional Chinese Medicine (No. 2020JC0063), and the Science and Technology Project of Luzhou City (2022-SYF-99).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to this work. YZ and YW contributed equally to this work. YZ, YW, and XGT conceived and designed the experiments; FZ, LJD, and TYC performed most of the experiments; LJD and TYC contributed to data collection; XLS and RW analyzed the data; YZ and YW wrote the manuscript; XGT revised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xue-gui Tang.

Ethics declarations

Ethics Approval

The procedures in this experiment were performed in accordance with protocols approved by the Animal Ethics Committee of West China Hospital of Sichuan University (Approval No. 20221203006).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Zhan and Yong Wen contributed equally to this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Wen, Y., Zheng, F. et al. MiR-26b-3p Promotes Intestinal Motility Disorder by Targeting FZD10 to Inhibit GSK3β/β-Catenin Signaling and Induce Enteric Glial Cell Apoptosis. Mol Neurobiol 61, 1543–1561 (2024). https://doi.org/10.1007/s12035-023-03600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03600-8

Keywords

Navigation