Skip to main content

Advertisement

Log in

Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available in the manuscript.

References

  1. Novak CM, Ozen M, Burd I (2018) Perinatal brain injury: mechanisms, prevention, and outcomes. Clin Perinatol 45(2):357–375. https://doi.org/10.1016/j.clp.2018.01.015

    Article  PubMed  Google Scholar 

  2. Sanchez-Illana A, Pineiro-Ramos JD, Kuligowski J (2020) Small molecule biomarkers for neonatal hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med 25(2):101084. https://doi.org/10.1016/j.siny.2020.101084

    Article  PubMed  Google Scholar 

  3. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  4. Lai MC, Yang SN (2011) Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2011:609813. https://doi.org/10.1155/2011/609813

    Article  CAS  PubMed  Google Scholar 

  5. Perlman M, Shah PS (2011) Hypoxic-ischemic encephalopathy: challenges in outcome and prediction. J Pediatr 158(2 Suppl):e51-54. https://doi.org/10.1016/j.jpeds.2010.11.014

    Article  PubMed  Google Scholar 

  6. Douglas-Escobar M, Weiss MD (2012) Biomarkers of brain injury in the premature infant. Front Neurol 3:185. https://doi.org/10.3389/fneur.2012.00185

    Article  PubMed  Google Scholar 

  7. Huang WQ, Zhang W, Liu WW (2020) Research progress in drug therapy for neonatal hypoxic ischemic encephalopathy. Med Recapotulate 26(22):4457–4461. https://doi.org/10.3969/j.issn.1006-2084.2020.22.017

    Article  Google Scholar 

  8. Narayanamurthy R, Yang JJ, Yager JY, Unsworth LD (2021) Drug delivery platforms for neonatal brain injury. J Control Release 330:765–787. https://doi.org/10.1016/j.jconrel.2020.12.056

    Article  CAS  PubMed  Google Scholar 

  9. Zou R, Mu DZ (2016) prevention and treatment of energy failure in neonates with hypoxic-ischemic encephalopathy. Zhongguo Dang Dai Er Ke Za Zhi 18(9):915–920. https://doi.org/10.7499/j.issn.1008-8830.2016.09.024

    Article  PubMed  Google Scholar 

  10. Adstamongkonkul D, Hess DC (2017) Ischemic conditioning and neonatal hypoxic ischemic encephalopathy: a literature review. Cond Med 1(1):9–16

    PubMed  PubMed Central  Google Scholar 

  11. Bhalala US, Koehler RC, Kannan S (2014) Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2:144. https://doi.org/10.3389/fped.2014.00144

    Article  PubMed  Google Scholar 

  12. Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169(4):397–403. https://doi.org/10.1001/jamapediatrics.2014.3269

    Article  PubMed  Google Scholar 

  13. Zhu JC, Peng ZH, Teng XF et al (2016) Efficacy of het0016 for improving delayed mild hypothermia-induced protection of rat neurons subjected to oxygen-glucose deprivation and restoration in vitro. Chin J Anesthesiol 36(4):484–487. https://doi.org/10.3760/cma.j.issn.0254-1416.2016.04.027

    Article  Google Scholar 

  14. Zhu JC, Bai WY, Yang YC et al (2016) Effect of het0016 combined with mild hypothermia on expression of m-calpain protein in cerebral neurons of neonatal piglets with hypoxic-ischemic encephalopathy. Chin J Anesthesiol 36:505–507. https://doi.org/10.3760/cma.j.issn.0254-1416.2016.04.033

    Article  Google Scholar 

  15. Perrin BJ, Huttenlocher A (2002) Calpain. Int J Biochem Cell Biol 34(7):722–725. https://doi.org/10.1016/s1357-2725(02)00009-2

    Article  CAS  PubMed  Google Scholar 

  16. Khan H, Garg N, Singh TG, Kaur A, Thapa K (2022) Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases. Neurochem Res 47(5):1125–1149. https://doi.org/10.1007/s11064-021-03521-9

    Article  CAS  PubMed  Google Scholar 

  17. Wu HY, Lynch DR (2006) Calpain and synaptic function. Mol Neurobiol 33(3):215–236. https://doi.org/10.1385/MN:33:3:215

    Article  PubMed  Google Scholar 

  18. Baudry M, Bi X (2016) Calpain-1 and calpain-2: the yin and yang of synaptic plasticity and neurodegeneration. Trends Neurosci 39(4):235–245. https://doi.org/10.1016/j.tins.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinkai-Ouchi F, Shindo M, Doi N, Hata S, Ono Y (2020) Calpain-2 participates in the process of calpain-1 inactivation. Biosci Rep 40(11):BSR20200552. https://doi.org/10.1042/BSR20200552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801. https://doi.org/10.1152/physrev.00029.2002

    Article  CAS  PubMed  Google Scholar 

  21. Dokus LE, Yousef M, Banoczi Z (2020) Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 15(4):471–486. https://doi.org/10.1080/17460441.2020.1722638

    Article  CAS  PubMed  Google Scholar 

  22. Salazar IL, Caldeira MV, Curcio M, Duarte CB (2016) The role of proteases in hippocampal synaptic plasticity: putting together small pieces of a complex puzzle. Neurochem Res 41(1–2):156–182. https://doi.org/10.1007/s11064-015-1752-5

    Article  CAS  PubMed  Google Scholar 

  23. Sorimachi H, Mamitsuka H, Ono Y (2012) Understanding the substrate specificity of conventional calpains. Biol Chem 393(9):853–871. https://doi.org/10.1515/hsz-2012-0143

    Article  CAS  PubMed  Google Scholar 

  24. Zatz M, Starling A (2005) Calpains and disease. N Engl J Med 352(23):2413–2423. https://doi.org/10.1056/NEJMra043361

    Article  CAS  PubMed  Google Scholar 

  25. Kuang CS, Xu H, Huang Z et al (2015) The protective effect of calpain inhibitor against focal cerebral ischemia-reperfusion injury in rats. Med Innov China 12(28):15–18. https://doi.org/10.3969/j.issn.1674-4985.2015.28.005

    Article  Google Scholar 

  26. Li H, Zhang N, Sun G, Ding S (2013) Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro 5(3):195–207. https://doi.org/10.1042/AN20130002

    Article  CAS  PubMed  Google Scholar 

  27. Zheng B, Wu X, Yang L (2011) Dynamic changes of calpain1 and calpain2 after traumatic brain injury in rats. China Med Univ 26(1):13–15

    Google Scholar 

  28. Cao X, Zhang Y, Zou L, Xiao H, Chu Y, Chu X (2010) Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis. Neurosci Lett 479(2):118–122. https://doi.org/10.1016/j.neulet.2010.05.040

    Article  CAS  PubMed  Google Scholar 

  29. Brodhun M, Fritz H, Walter B, Antonow-Schlorke I, Reinhart K, Zwiener U, Bauer R, Patt S (2001) Immunomorphological sequelae of severe brain injury induced by fluid-percussion in juvenile pigs–effects of mild hypothermia. Acta Neuropathol 101(5):424–434. https://doi.org/10.1007/s004010000290

    Article  CAS  PubMed  Google Scholar 

  30. Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R (2019) Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron 103(3):367–379. https://doi.org/10.1016/j.neuron.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, Zhang JH (2020) cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol 57(6):2600–2619. https://doi.org/10.1007/s12035-020-01904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hausburg MA, Banton KL, Roman PE, Salgado F, Baek P, Waxman MJ, Tanner A 2nd, Yoder J et al (2020) Effects of propofol on ischemia-reperfusion and traumatic brain injury. J Crit Care 56:281–287. https://doi.org/10.1016/j.jcrc.2019.12.021

    Article  CAS  PubMed  Google Scholar 

  33. Shi H, Yu Y, Liu X, Yu Y, Li M, Wang Y, Zou Y, Chen R (2022) Inhibition of calpain reduces cell apoptosis by suppressing mitochondrial fission in acute viral myocarditis. Cell Biol Toxicol 38(3):487–504. https://doi.org/10.1007/s10565-021-09634-9

    Article  CAS  PubMed  Google Scholar 

  34. Raynaud F, Marcilhac A (2006) Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer’s disease. FEBS J 273(15):3437–3443. https://doi.org/10.1111/j.1742-4658.2006.05352.x

    Article  CAS  PubMed  Google Scholar 

  35. Kambe A, Yokota M, Saido TC, Satokata I, Fujikawa H, Tabuchi S, Kamitani H, Watanabe T (2005) Spatial resolution of calpain-catalyzed proteolysis in focal cerebral ischemia. Brain Res 1040(1–2):36–43. https://doi.org/10.1016/j.brainres.2005.01.080

    Article  CAS  PubMed  Google Scholar 

  36. Rami A, Agarwal R, Botez G, Winckler J (2000) mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866(1–2):299–312. https://doi.org/10.1016/s0006-8993(00)02301-5

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Siman R, Xu YA, Mills AM, Frederick JR, Neumar RW (2002) Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10(3):289–205. https://doi.org/10.1006/nbdi.2002.0526

    Article  CAS  PubMed  Google Scholar 

  38. Blomgren K, McRae A, Elmered A, Bona E, Kawashima S, Saido TC, Ono T, Hagberg H (1997) The calpain proteolytic system in neonatal hypoxic-ischemia. Ann N Y Acad Sci 825:104–119. https://doi.org/10.1111/j.1749-6632.1997.tb48420.x

    Article  CAS  PubMed  Google Scholar 

  39. Kawamura M, Nakajima W, Ishida A, Ohmura A, Miura S, Takada G (2005) Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis. Brain Res 1037(1–2):59–69. https://doi.org/10.1016/j.brainres.2004.12.050

    Article  CAS  PubMed  Google Scholar 

  40. Mellgren RL (1997) Evidence for participation of a calpain-like cysteine protease in cell cycle progression through late G1 phase. Biochem Biophys Res Commun 236(3):555–558. https://doi.org/10.1006/bbrc.1997.7003

    Article  CAS  PubMed  Google Scholar 

  41. Jia SZ, Xu XW, Zhang ZH, Chen C, Chen Y-B, Huang S-L, Liu Q, Hoffmann P-R et al (2021) Selenoprotein K deficiency-induced apoptosis: a role for calpain and the ERS pathway. Redox Biol 47:102154. https://doi.org/10.1016/j.redox.2021.102154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie RJ, Hu XX, Zheng L, Cai S, Chen Y-S, Yang Y, Yang T, Han B et al (2020) Calpain-2 activity promotes aberrant endoplasmic reticulum stress-related apoptosis in hepatocytes. World J Gastroenterol 26(13):1450–1462. https://doi.org/10.3748/wjg.v26.i13.1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peintner L, Venkatraman A, Waeldin A, Hofherr A, Busch T, Voronov A, Viau A, Kuehn EW et al (2021) Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy 17(9):2384–2400. https://doi.org/10.1080/15548627.2020.1826716

    Article  CAS  PubMed  Google Scholar 

  44. Yamashima T, Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T, Kominami E (2003) Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13(7):791–800. https://doi.org/10.1002/hipo.10127

    Article  CAS  PubMed  Google Scholar 

  45. Yamashima T (2004) Ca2+-dependent proteases in ischemic neuronal death: a conserved “calpain-cathepsin cascade” from nematodes to primates. Cell Calcium 36(3–4):285–293. https://doi.org/10.1016/j.ceca.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  46. Yamashima T, Oikawa S (2009) The role of lysosomal rupture in neuronal death. Prog Neurobiol 89(4):343–358. https://doi.org/10.1016/j.pneurobio.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  47. Hossain MI, Marcus JM, Lee JH, Garcia PL, Singh V, Shacka JJ, Zhang J, Gropen TI et al (2021) Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy 17(6):1330–1348. https://doi.org/10.1080/15548627.2020.1761219

    Article  CAS  PubMed  Google Scholar 

  48. Yamashima T (2016) Can “calpain-cathepsin hypothesis” explain Alzheimer neuronal death? Ageing Res Rev 32:169–179. https://doi.org/10.1016/j.arr.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  49. Knopp RC, Jastaniah A, Dubrovskyi O, Gaisina I, Tai L, Thatcher GRJ (2021) Extending the calpain-cathepsin hypothesis to the neurovasculature: protection of brain endothelial cells and mice from neurotrauma. ACS Pharmacol Transl Sci 4(1):372–385. https://doi.org/10.1021/acsptsci.0c00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Alonso E, Guerra-Perez N, Escobar-Peso A, Peracho L, Vera-Lechuga R, Cruz-Culebras A, Masjuan J, Alcázar A (2022) Phosphorylation of eukaryotic initiation factor 4G1 (eIF4G1) at Ser1147 is specific for eIF4G1 bound to eIF4E in delayed neuronal death after ischemia. Int J Mol Sci 23(3):1830. https://doi.org/10.3390/ijms23031830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179(S 1-2):1–33. https://doi.org/10.1016/s0022-510x(00)00386-5

    Article  CAS  PubMed  Google Scholar 

  52. Westenbroek RE, Bausch SB, Lin RC, Franck JE, Noebels JL, Catterall WA (1998) Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J Neurosci 18(7):2321–2334. https://doi.org/10.1523/JNEUROSCI.18-07-02321.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bevers MB, Neumar RW (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28(4):655–673. https://doi.org/10.1038/sj.jcbfm.9600595

    Article  CAS  PubMed  Google Scholar 

  54. Barnoy S, Zipser Y, Glaser T, Grimberg Y, Kosower NS (1999) Association of calpain (Ca(2+)-dependent thiol protease) with its endogenous inhibitor calpastatin in myoblasts. J Cell Biochem 74(4):522–531. https://doi.org/10.1002/(sici)1097-4644(19990915)74:4%3c522::aid-jcb2%3e3.3.co;2-9

    Article  CAS  PubMed  Google Scholar 

  55. Parr T, Sensky PL, Bardsley RG, Buttery PJ et al (2001) Calpastatin expression in porcine cardiac and skeletal muscle and partial gene structure. Arch Biochem Biophys 395(1):1–13. https://doi.org/10.1006/abbi.2001.2546

    Article  CAS  PubMed  Google Scholar 

  56. Parr T, Jewell KK, Sensky PL, Brameld JM, Brameld JM, Buttery PJ (2004) Expression of calpastatin isoforms in muscle and functionality of multiple calpastatin promoters. Arch Biochem Biophys 427(1):8–15. https://doi.org/10.1016/j.abb.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  57. Wendt A, Thompson VF, Goll DE (2004) Interaction of calpastatin with calpain: a review. Biol Chem 385(6):465–472. https://doi.org/10.1515/BC.2004.054

    Article  CAS  PubMed  Google Scholar 

  58. Nian H, Ma B (2021) Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 96(3):961–975. https://doi.org/10.1111/brv.12686

    Article  PubMed  Google Scholar 

  59. Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M (2013) Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80(5):1175–1189. https://doi.org/10.1016/j.neuron.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  60. Kotova IM, Pestereva NS, Traktirov DS, Absalyamova MT, Karpenko MN (2023) Functions and distribution of calpain-calpastatin system components in brain during mammal ontogeny. Biochim Biophys Acta Gen Subj 1867 5:130345. https://doi.org/10.1016/j.bbagen.2023.130345

    Article  CAS  Google Scholar 

  61. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2(3):173–189. https://doi.org/10.2174/1568007033482887

    Article  CAS  PubMed  Google Scholar 

  62. Blomgren K (1999) Calpastatin is upregulated and acts as a suicide substrate to calpains in neonatal rat hypoxia-ischemia. Ann N Y Acad Sci 890:270–271. https://doi.org/10.1111/j.1749-6632.1999.tb08002.x

    Article  CAS  PubMed  Google Scholar 

  63. Higuchi M, Tomioka M, Takano J, Shirotani K, Iwata N, Masumoto H, Maki M, Itohara S et al (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J Biol Chem 280(15):15229–15237. https://doi.org/10.1074/jbc.M500939200

    Article  CAS  PubMed  Google Scholar 

  64. Guo A, Hall D, Zhang C, Peng T, Miller JD, Kutschke W, Grueter CE, Johnson FL et al (2015) Molecular determinants of calpain-dependent cleavage of junctophilin-2 protein in cardiomyocytes. J Biol Chem 290(29):17946–17955. https://doi.org/10.1074/jbc.M115.652396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Al Z, Cohen CM (1993) Phorbol 12-myristate 13-acetate-stimulated phosphorylation of erythrocyte membrane skeletal proteins is blocked by calpain inhibitors: possible role of protein kinase M. Biochem J 296(Pt 3):675–683. https://doi.org/10.1042/bj2960675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu T, Schneider RA, Shah V, Huang Y, Likhotvorik RI, Keshvara L, Hoyt DG (2009) Protein never in mitosis gene A interacting-1 regulates calpain activity and the degradation of cyclooxygenase-2 in endothelial cells. J Inflamm (Lond) 6:20. https://doi.org/10.1186/1476-9255-6-20

    Article  PubMed  Google Scholar 

  67. Cho S, Liu D, Fairman D, Jenkins Li P, McGonigle P, Wood A (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45(1):117–127. https://doi.org/10.1016/j.neuint.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  68. Alavez S, Moran J, Franco-Cea A, Ortega-Gómez A, Casaletti L, Cameron LC (2004) Myosin Va is proteolysed in rat cerebellar granule neurons after excitotoxic injury. Neurosci Lett 367(3):404–409. https://doi.org/10.1016/j.neulet.2004.06.043

    Article  CAS  PubMed  Google Scholar 

  69. Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, Yuen PW, Wang KK, Hall ED (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18(11):1229–1240. https://doi.org/10.1089/089771501317095269

    Article  CAS  PubMed  Google Scholar 

  70. Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20(3):261–268. https://doi.org/10.1089/089771503321532842

    Article  CAS  PubMed  Google Scholar 

  71. Arataki S, Tomizawa K, Moriwaki A, Nishida K, Matsushita M, Ozaki T, Kunisada T, Yoshida A et al (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22(3):398–406. https://doi.org/10.1089/neu.2005.22.398

    Article  PubMed  Google Scholar 

  72. Seki T, Wang MH, Miyata N, Laniado-Schwartzman M (2005) Cytochrome P450 4A isoform inhibitory profile of N-hydroxy-N’-(4-butyl-2-methylphenyl)-formamidine (HET0016), a selective inhibitor of 20-HETE synthesis. Biol Pharm Bull 28(9):1651–1654. https://doi.org/10.1248/bpb.28.1651

    Article  CAS  PubMed  Google Scholar 

  73. Shi YW, Wu X, Qu Y et al (2022) Het0016 alleviates brain injury by inhibiting excessive autophagy after traumatic brain injury. Journal of Air Force Medical University 43(4):415–418

    Google Scholar 

  74. Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390. https://doi.org/10.1038/nrm2393

    Article  CAS  PubMed  Google Scholar 

  75. Yang ZJ, Carter EL, Kibler KK, Kwansa H, Crafa DA, Martin LJ, Roman RJ, Harder DR et al (2012) Attenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor. J Neurochem 121(1):168–179. https://doi.org/10.1111/j.1471-4159.2012.07666.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeng Z, Zhang Y, Jiang W, He L, Qu H (2020) Modulation of autophagy in traumatic brain injury. J Cell Physiol 235(3):1973–1985. https://doi.org/10.1002/jcp.29173

    Article  CAS  PubMed  Google Scholar 

  77. Poloyac SM, Zhang Y, Bies RR, Kochanek PM, Graham SH (2006) Protective effect of the 20-HETE inhibitor HET0016 on brain damage after temporary focal ischemia. J Cereb Blood Flow Metab 26(12):1551–1561. https://doi.org/10.1038/sj.jcbfm.9600309

    Article  CAS  PubMed  Google Scholar 

  78. Zhao XC, An P, Wu XY (2014) Role of het0016 in mice with col1agenase-induced intracerebral hemorrhage. Prog Anat Sci 1:5

    Google Scholar 

  79. Shu S, Zhang Z, Spicer D, Kulikowicz E, Hu K, Babapoor-Farrokhran S, Kannan S, Koehler RC et al (2019) Administration of a 20-hydroxyeicosatetraenoic acid synthesis inhibitor improves outcome in a rat model of pediatric traumatic brain injury. Dev Neurosci 41(3–4):166–176. https://doi.org/10.1159/000500895

    Article  CAS  PubMed  Google Scholar 

  80. Gao H, Cao Y, Xia H, Zhu X, Jin Y (2020) CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROS-induced lipid peroxidation and inflammation. Int J Mol Med 45(4):1121–1129. https://doi.org/10.3892/ijmm.2020.4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Han X, Zhao X, Lan X, Li Q, Gao Y, Liu X, Wan J, Yang Z et al (2019) 20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. J Cereb Blood Flow Metab 39(8):1531–1543. https://doi.org/10.1177/0271678X18762645

    Article  CAS  PubMed  Google Scholar 

  82. Yildiz EP, Ekici B, Tatli B (2017) Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 17(5):449–459. https://doi.org/10.1080/14737175.2017.1259567

    Article  CAS  PubMed  Google Scholar 

  83. O’Mara K, McPherson C (2021) Neuroprotective agents for neonates with hypoxic-ischemic encephalopathy. Neonatal Netw 40(6):406–413. https://doi.org/10.1891/11-T-755

    Article  PubMed  Google Scholar 

  84. Natarajan G, Pappas A, Shankaran S (2016) Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin Perinatol 40(8):549–555. https://doi.org/10.1053/j.semperi.2016.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  85. Donkor IO (2011) Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 21(5):601–636. https://doi.org/10.1517/13543776.2011.568480

    Article  CAS  PubMed  Google Scholar 

  86. Donkor IO (2020) An update on the therapeutic potential of calpain inhibitors: a patent review. Expert Opin Ther Pat 30(9):659–675. https://doi.org/10.1080/13543776.2020.1797678

    Article  CAS  PubMed  Google Scholar 

  87. Ji J, Su L, Liu Z (2016) Critical role of calpain in inflammation. Biomed Rep 5(6):647–652. https://doi.org/10.3892/br.2016.785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumar V, Ahmad A (2017) Targeting calpains: a novel immunomodulatory approach for microbial infections. Eur J Pharmacol 814:28–44. https://doi.org/10.1016/j.ejphar.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  89. Gao A, Mcoy HM, Zaman V, Shields DC, Banik NL, Haque A (2022) Calpain activation and progression of inflammatory cycles in Parkinson’s disease. Front Biosci (Landmark edition) 27:20. https://doi.org/10.31083/j.fbl2701020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ruiyang Zhao designed the study and drafted the manuscript. Xiufei Teng and Yanchao Yang collated the data, carried out data analyses, and produced the initial draft of the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Yanchao Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Teng, X. & Yang, Y. Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 61, 533–540 (2024). https://doi.org/10.1007/s12035-023-03594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03594-3

Keywords

Navigation