Skip to main content

Advertisement

Log in

Stress-induced Neuroinflammation of the Spinal Cord is Restrained by Cort113176 (Dazucorilant), A Specific Glucocorticoid Receptor Modulator

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. .”The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1β and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1β, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data presented in this study are included in the Materials and Methods section, in the corresponding References section and are available from the corresponding author on request.

References

  1. Arriza JL, Simerly RB, Swanson LW, Evans RM (1988) The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1(9):887–900. https://doi.org/10.1016/0896-6273(88)90136-5

    Article  CAS  PubMed  Google Scholar 

  2. Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL, Pooley JR (2019) Glucocorticoid receptor-tethered mineralocorticoid receptors increase Glucocorticoid-Induced transcriptional responses. Endocrinology 160(5):1044–1056. https://doi.org/10.1210/en.2018-00819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herrlich P (2001) Cross-talk between glucocorticoid receptor and AP-1. Oncogene 20(19):2465–2475. https://doi.org/10.1038/sj.onc.1204388

    Article  CAS  PubMed  Google Scholar 

  4. Hudson WH, Vera IMS, Nwachukwu JC, Weikum ER, Herbst AG, Yang Q, Bain DL, Nettles KW, Kojetin DJ, Ortlund EA (2018) Cryptic glucocorticoid receptor-binding sites pervade genomic NF-kappaB response elements. Nat Commun 9(1):1337. https://doi.org/10.1038/s41467-018-03780-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044. https://doi.org/10.1016/j.jaci.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13. https://doi.org/10.1016/j.mce.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cruz-Topete D, Cidlowski JA (2015) One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 22(1–2):20–32. https://doi.org/10.1159/000362724

    Article  CAS  PubMed  Google Scholar 

  8. de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joels M (2018) Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocr 49:124–145. https://doi.org/10.1016/j.yfrne.2018.02.003

    Article  CAS  Google Scholar 

  9. Duque Ede A, Munhoz CD (2016) The pro-inflammatory Effects of Glucocorticoids in the brain. Front Endocrinol 7:78. https://doi.org/10.3389/fendo.2016.00078

    Article  Google Scholar 

  10. Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA (2012) Proinflammatory actions of glucocorticoids: glucocorticoids and TNFalpha coregulate gene expression in vitro and in vivo. Endocrinology 153(8):3701–3712. https://doi.org/10.1210/en.2012-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7(3):284–301. https://doi.org/10.1210/edrv-7-3-284

    Article  CAS  PubMed  Google Scholar 

  12. Sorrells SF, Munhoz CD, Manley NC, Yen S, Sapolsky RM (2014) Glucocorticoids increase excitotoxic injury and inflammation in the hippocampus of adult male rats. Neuroendocrinology 100(2–3):129–140. https://doi.org/10.1159/000367849

    Article  CAS  PubMed  Google Scholar 

  13. Fidler JA, Treleaven CM, Frakes A, Tamsett TJ, McCrate M, Cheng SH, Shihabuddin LS, Kaspar BK, Dodge JC (2011) Disease progression in a mouse model of amyotrophic lateral sclerosis: the influence of chronic stress and corticosterone. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 25(12):4369–4377. https://doi.org/10.1096/fj.11-190819

  14. Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R (2016) Steroid profiling in male Wobbler mouse, a model of amyotrophic lateral sclerosis. Endocrinology 157(11):4446–4460. https://doi.org/10.1210/en.2016-1244

    Article  CAS  PubMed  Google Scholar 

  15. Greenhill C (2016) Pituitary disease: inflammation in patients with cushing disease. Nat reviews Endocrinol 12(12):687. https://doi.org/10.1038/nrendo.2016.170

    Article  CAS  Google Scholar 

  16. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V (2021) Neuroinflammation and depression: a review. Eur J Neurosci 53(1):151–171. https://doi.org/10.1111/ejn.14720

    Article  CAS  PubMed  Google Scholar 

  17. Aziz NA, Pijl H, Frolich M, van der Graaf AW, Roelfsema F, Roos RA (2009) Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metab 94(4):1223–1228. https://doi.org/10.1210/jc.2008-2543

    Article  CAS  PubMed  Google Scholar 

  18. Gargiulo-Monachelli GM, Sivori M, Meyer M, Sica RE, De Nicola AF, Gonzalez-Deniselle MC (2014) Circulating gonadal and adrenal steroids in amyotrophic lateral sclerosis: possible markers of susceptibility and outcome. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 46(6):433–439. https://doi.org/10.1055/s-0034-1371891

    Article  CAS  PubMed  Google Scholar 

  19. Holleman J, Adagunodo S, Kareholt I, Hagman G, Aspo M, Udeh-Momoh CT, Solomon A, Kivipelto M, Sindi S (2022) Cortisol, cognition and Alzheimer’s disease biomarkers among memory clinic patients. BMJ Neurol open 4(2):e000344. https://doi.org/10.1136/bmjno-2022-000344

    Article  PubMed  PubMed Central  Google Scholar 

  20. Spataro R, Volanti P, Vitale F, Meli F, Colletti T, Di Natale A, La Bella V (2015) Plasma cortisol level in amyotrophic lateral sclerosis. J Neurol Sci 358(1–2):282–286. https://doi.org/10.1016/j.jns.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  21. Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OF, Sousa N, Sotiropoulos I (2016) Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural plasticity 2016:6391686. https://doi.org/10.1155/2016/6391686

  22. Schmitt-John T (2015) VPS54 and the wobbler mouse. Front NeuroSci 9:381. https://doi.org/10.3389/fnins.2015.00381

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez Deniselle MC, Gonzalez S, Piroli G, Ferrini M, Lima AE, De Nicola AF (1997) Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse, a model for neurodegenerative diseases. J Steroid Biochem Mol Biol 60(3–4):205–213. https://doi.org/10.1016/s0960-0760(96)00193-8

    Article  CAS  PubMed  Google Scholar 

  24. Meyer M, Gonzalez Deniselle MC, Hunt H, de Kloet ER, De Nicola AF (2014) The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice. J Steroid Biochem Mol Biol 143:40–48. https://doi.org/10.1016/j.jsbmb.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  25. Dahlke C, Saberi D, Ott B, Brand-Saberi B, Schmitt-John T, Theiss C (2015) Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflamm 12:215. https://doi.org/10.1186/s12974-015-0435-0

    Article  CAS  Google Scholar 

  26. Hantaz-Ambroise D, Blondet B, Murawsky M, Rieger F (1994) Abnormal astrocyte differentiation and defective cellular interactions in wobbler mouse spinal cord. J Neurocytol 23(3):179–192. https://doi.org/10.1007/BF01181559

    Article  CAS  PubMed  Google Scholar 

  27. Meyer M, Gonzalez Deniselle MC, Garay L, Sitruk-Ware R, Guennoun R, Schumacher M, De Nicola AF (2015) The progesterone receptor agonist nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience 308:51–63. https://doi.org/10.1016/j.neuroscience.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  28. Meyer M, Lima A, Deniselle MCG, De Nicola AF (2022) Early Signs of Neuroinflammation in the postnatal wobbler mouse model of amyotrophic lateral sclerosis. Cellular and molecular neurobiology. https://doi.org/10.1007/s10571-022-01294-5

  29. De Nicola AF, Meyer M, Guennoun R, Schumacher M, Hunt H, Belanoff J, de Kloet ER, Gonzalez Deniselle MC (2020) Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative Diseases. Int J Mol Sci 21(6). https://doi.org/10.3390/ijms21062137

  30. Meyer M, Kruse MS, Garay L, Lima A, Roig P, Hunt H, Belanoff J, de Kloet ER, Deniselle MCG, De Nicola AF (2020) Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Res 1727:146551. https://doi.org/10.1016/j.brainres.2019.146551

    Article  CAS  PubMed  Google Scholar 

  31. Meyer M, Lara A, Hunt H, Belanoff J, de Kloet ER, Gonzalez Deniselle MC, De Nicola AF (2018) The selective glucocorticoid receptor modulator cort 113176 reduces neurodegeneration and neuroinflammation in Wobbler mice spinal cord. Neuroscience 384:384–396. https://doi.org/10.1016/j.neuroscience.2018.05.042

    Article  CAS  PubMed  Google Scholar 

  32. Atucha E, Zalachoras I, van den Heuvel JK, van Weert LT, Melchers D, Mol IM, Belanoff JK, Houtman R, Hunt H, Roozendaal B, Meijer OC (2015) A mixed Glucocorticoid/Mineralocorticoid selective Modulator with Dominant antagonism in the male rat brain. Endocrinology 156(11):4105–4114. https://doi.org/10.1210/en.2015-1390

    Article  CAS  PubMed  Google Scholar 

  33. Pineau F, Canet G, Desrumaux C, Hunt H, Chevallier N, Ollivier M, Belanoff JK, Givalois L (2016) New selective glucocorticoid receptor modulators reverse amyloid-beta peptide-induced hippocampus toxicity. Neurobiol Aging 45:109–122. https://doi.org/10.1016/j.neurobiolaging.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  34. Solomon MB, Wulsin AC, Rice T, Wick D, Myers B, McKlveen J, Flak JN, Ulrich-Lai Y, Herman JP (2014) The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Horm Behav 65(4):363–371. https://doi.org/10.1016/j.yhbeh.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zalachoras I, Houtman R, Atucha E, Devos R, Tijssen AM, Hu P, Lockey PM, Datson NA, Belanoff JK, Lucassen PJ, Joels M, de Kloet ER, Roozendaal B, Hunt H, Meijer OC (2013) Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci USA 110(19):7910–7915. https://doi.org/10.1073/pnas.1219411110

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beaudry JL, Dunford EC, Teich T, Zaharieva D, Hunt H, Belanoff JK, Riddell MC (2014) Effects of selective and non-selective glucocorticoid receptor II antagonists on rapid-onset diabetes in young rats. PLoS ONE 9(3):e91248. https://doi.org/10.1371/journal.pone.0091248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meijer OC, Koorneef LL, Kroon J (2018) Glucocorticoid receptor modulators. Ann Endocrinol 79(3):107–111. https://doi.org/10.1016/j.ando.2018.03.004

    Article  Google Scholar 

  38. McEwen BS, Akil H (2020) Revisiting the stress Concept: implications for Affective Disorders. J neuroscience: official J Soc Neurosci 40(1):12–21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019

    Article  CAS  Google Scholar 

  39. Bellavance MA, Rivest S (2014) The HPA - Immune Axis and the immunomodulatory actions of Glucocorticoids in the brain. Front Immunol 5:136. https://doi.org/10.3389/fimmu.2014.00136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frank MG, Annis JL, Watkins LR, Maier SF (2019) Glucocorticoids mediate stress induction of the alarmin HMGB1 and reduction of the microglia checkpoint receptor CD200R1 in limbic brain structures. Brain Behav Immun 80:678–687. https://doi.org/10.1016/j.bbi.2019.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frank MG, Fonken LK, Watkins LR, Maier SF (2020) Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: a role for potentiated NLRP3 inflammasome activation. Brain Behav Immun 89:32–42. https://doi.org/10.1016/j.bbi.2020.05.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Golovatscka V, Ennes H, Mayer EA, Bradesi S (2012) Chronic stress-induced changes in pro-inflammatory cytokines and spinal glia markers in the rat: a time course study. Neuroimmunomodulation 19(6):367–376. https://doi.org/10.1159/000342092

    Article  CAS  PubMed  Google Scholar 

  43. Bridges N, Slais K, Sykova E (2008) The effects of chronic corticosterone on hippocampal astrocyte numbers: a comparison of male and female Wistar rats. Acta Neurobiol Exp 68(2):131–138

    Article  Google Scholar 

  44. Michinaga S, Koyama Y (2021) Pathophysiological responses and roles of astrocytes in traumatic brain Injury. Int J Mol Sci 22(12). https://doi.org/10.3390/ijms22126418

  45. Zhang H, Xue W, Xue X, Fan Y, Yang Y, Zhao Y, Chen B, Yin Y, Yang B, Xiao Z, Dai J (2021) Spatiotemporal dynamic changes, proliferation, and differentiation characteristics of Sox9-positive cells after severe complete transection spinal cord injury. Exp Neurol 337:113556. https://doi.org/10.1016/j.expneurol.2020.113556

    Article  CAS  PubMed  Google Scholar 

  46. Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES (2022) Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. https://doi.org/10.1038/s41386-022-01519-7

    Article  PubMed  Google Scholar 

  47. Iring A, Toth A, Baranyi M, Otrokocsi L, Modis LV, Goloncser F, Varga B, Hortobagyi T, Bereczki D, Denes A, Sperlagh B (2022) The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson’s disease: signalling pathway and novel therapeutic targets. Pharmacol Res 176:106045. https://doi.org/10.1016/j.phrs.2021.106045

    Article  CAS  PubMed  Google Scholar 

  48. Pascual M, Calvo-Rodriguez M, Nunez L, Villalobos C, Urena J, Guerri C (2021) Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 73(7):900–915. https://doi.org/10.1002/iub.2510

    Article  CAS  PubMed  Google Scholar 

  49. Shi Y, Zhang L, Teng J, Miao W (2018) HMGB1 mediates microglia activation via the TLR4/NF-kappaB pathway in coriaria lactone induced epilepsy. Mol Med Rep 17(4):5125–5131. https://doi.org/10.3892/mmr.2018.8485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garay LI, Gonzalez Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF (2012) Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 226:40–50. https://doi.org/10.1016/j.neuroscience.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  51. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  52. Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088. https://doi.org/10.1212/WNL.0b013e3182a4a577

    Article  PubMed  Google Scholar 

  53. Sierra A, Paolicelli RC, Kettenmann H (2019) Cien Anos de Microglia: milestones in a century of Microglial Research. Trends Neurosci 42(11):778–792. https://doi.org/10.1016/j.tins.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Yu E (2022) P2RY12 increased neuroinflammation to accelerate depression-like behaviors by the NLPR3 inflammasome. Curr Neurovasc Res. https://doi.org/10.2174/1567202619666220829110111

    Article  PubMed  Google Scholar 

  55. Walker DG, Tang TM, Mendsaikhan A, Tooyama I, Serrano GE, Sue LI, Beach TG, Lue LF (2020) Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer’s Disease Brains. Int J Mol Sci 21(2). https://doi.org/10.3390/ijms21020678

  56. Brambilla L, Martorana F, Guidotti G, Rossi D (2018) Dysregulation of Astrocytic HMGB1 Signaling in Amyotrophic lateral sclerosis. Front NeuroSci 12:622. https://doi.org/10.3389/fnins.2018.00622

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vardimon L (2000) Neuroprotection by glutamine synthetase. Isr Med Association journal: IMAJ 2 Suppl:46–51

  58. Cammer W (1990) Glutamine synthetase in the central nervous system is not confined to astrocytes. J Neuroimmunol 26(2):173–178. https://doi.org/10.1016/0165-5728(90)90088-5

    Article  CAS  PubMed  Google Scholar 

  59. Ben Haim L, Schirmer L, Zulji A, Sabeur K, Tiret B, Ribon M, Chang S, Lamers WH, Boillee S, Chaumeil MM, Rowitch DH (2021) Evidence for glutamine synthetase function in mouse spinal cord oligodendrocytes. Glia 69(12):2812–2827. https://doi.org/10.1002/glia.24071

    Article  CAS  PubMed  Google Scholar 

  60. Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A (2019) Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Rep 27(8):2262–2271e2265. https://doi.org/10.1016/j.celrep.2019.04.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McKay LI, Cidlowski JA (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 14(8):1222–1234. https://doi.org/10.1210/mend.14.8.0506

    Article  CAS  PubMed  Google Scholar 

  62. Gruver-Yates AL, Quinn MA, Cidlowski JA (2014) Analysis of glucocorticoid receptors and their apoptotic response to dexamethasone in male murine B cells during development. Endocrinology 155(2):463–474. https://doi.org/10.1210/en.2013-1473

    Article  CAS  PubMed  Google Scholar 

  63. Warner A, Ovadia H, Tarcic N, Weidenfeld J (2010) The effect of restraint stress on glucocorticoid receptors in mouse spleen lymphocytes: involvement of the sympathetic nervous system. Neuroimmunomodulation 17(5):298–304. https://doi.org/10.1159/000292019

    Article  CAS  PubMed  Google Scholar 

  64. Wei Y, Wang T, Liao L, Fan X, Chang L, Hashimoto K (2022) Brain-spleen axis in health and diseases: a review and future perspective. Brain Res Bull 182:130–140. https://doi.org/10.1016/j.brainresbull.2022.02.008

    Article  PubMed  Google Scholar 

  65. Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC (2021) The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 341:113703. https://doi.org/10.1016/j.expneurol.2021.113703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gehrand AL, Phillips J, Welhouse KD, Siddiqui H, Schulgit M, Hoffman J, Hunt H, Raff H (2022) Glucocorticoid receptor antagonist alters corticosterone and receptor-sensitive mRNAs in the hypoxic neonatal rat. Endocrinology 163(1). https://doi.org/10.1210/endocr/bqab232

  67. Koorneef LL, Kroon J, Viho EMG, Wahl LF, Heckmans KML, van Dorst M, Hoekstra M, Houtman R, Hunt H, Meijer OC (2020) The selective glucocorticoid receptor antagonist CORT125281 has tissue-specific activity. J Endocrinol 246(1):79–92. https://doi.org/10.1530/JOE-19-0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vandevyver S, Dejager L, Tuckermann J, Libert C (2013) New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 154(3):993–1007. https://doi.org/10.1210/en.2012-2045

    Article  CAS  PubMed  Google Scholar 

  69. Vandewalle J, Luypaert A, De Bosscher K, Libert C (2018) Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab 29(1):42–54. https://doi.org/10.1016/j.tem.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  70. Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM (2010) Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J neuroscience: official J Soc Neurosci 30(41):13690–13698. https://doi.org/10.1523/JNEUROSCI.0303-09.2010

    Article  CAS  Google Scholar 

  71. Sobesky JL, D’Angelo HM, Weber MD, Anderson ND, Frank MG, Watkins LR, Maier SF, Barrientos RM (2016) Glucocorticoids mediate short-term High-Fat Diet induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. eNeuro 3(4). https://doi.org/10.1523/ENEURO.0113-16.2016

  72. Yang L, Zhou H, Huang L, Su Y, Kong L, Ji P, Sun R, Wang C, Li W, Li W (2022) Stress level of glucocorticoid exacerbates neuronal damage and abeta production through activating NLRP1 inflammasome in primary cultured hippocampal neurons of APP-PS1 mice. Int Immunopharmacol 110:108972. https://doi.org/10.1016/j.intimp.2022.108972

    Article  CAS  PubMed  Google Scholar 

  73. Conrad CD (2008) Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis. Rev Neurosci 19(6):395–411. https://doi.org/10.1515/revneuro.2008.19.6.395

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rivat C, Becker C, Blugeot A, Zeau B, Mauborgne A, Pohl M, Benoliel JJ (2010) Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 150(2):358–368. https://doi.org/10.1016/j.pain.2010.05.031

    Article  PubMed  Google Scholar 

  75. Colombo E, Farina C (2016) Astrocytes: key regulators of Neuroinflammation. Trends Immunol 37(9):608–620. https://doi.org/10.1016/j.it.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  76. Fan YY, Huo J (2021) A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils? Neurochem Int 148:105080. https://doi.org/10.1016/j.neuint.2021.105080

    Article  CAS  PubMed  Google Scholar 

  77. Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N, Wang S, Benraiss A, Lou N, Goldman SA, Nedergaard M (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J neuroscience: official J Soc Neurosci 37(17):4493–4507. https://doi.org/10.1523/JNEUROSCI.3199-16.2017

    Article  CAS  Google Scholar 

  78. Rabolli V, Wallemme L, Lo Re S, Uwambayinema F, Palmai-Pallag M, Thomassen L, Tyteca D, Octave JN, Marbaix E, Lison D, Devuyst O, Huaux F (2014) Critical role of aquaporins in interleukin 1beta (IL-1beta)-induced inflammation. J Biol Chem 289(20):13937–13947. https://doi.org/10.1074/jbc.M113.534594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao M, Hu G (2014) Involvement of aquaporin 4 in astrocyte function and neuropsychiatric disorders. CNS Neurosci Ther 20(5):385–390. https://doi.org/10.1111/cns.12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu YZ, Wang YX, Jiang CL (2017) Inflammation: the common pathway of stress-related Diseases. Front Hum Neurosci 11:316. https://doi.org/10.3389/fnhum.2017.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Finantial support was received from the National Research Council of Argentina (PIP 2017 2019 #11220170100002CO, PIP 2022–2024 # 11220210100091CO), the Ministry of Health and Technology of Argentina (PICT 2021 00389), the University of Buenos Aires (Ubacyt 20020170100224BA) and Corcept Therapeutics, Menlo Park, Ca. USA. The Rene Baron, Williams, Allende and Roemmers Foundations of Argentina contributed to the basic functions of the Institute. These funding sources did not have a role in the collection, analysis or interpretation of data, in the writing and in the decision to publish the results of the present investigation.

Author information

Authors and Affiliations

Authors

Contributions

Maria Meyer and Maria Claudia Gonzalez Deniselle analyzed data and performed the experiments; Analia Lima perform cell immunolabelling; Onno Meijer and E.Ronald de Kloet corrected the manuscript, emphasized the agonist/antagonist nature of glucocorticoid receptor modulators and advised regarding the selection of cell markers; Hazel.Hunt. and Joseph Belanoff made valuable comments and corrected the manuscript; Maria Claudia Gonzalez Deniselle and Alejandro F. De Nicola wrote the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alejandro F. De Nicola.

Ethics declarations

Ethics approval

All animal procedures were evaluated and approved by the Institutional Animal Care and Use Committee following the Guide for the Care and Use of Laboratory Animals (Animal Welfare Assurance, NIH certificate granted to our Institute is # F16-00065 A5072-01).

Consent to participate

All listed authors agreed to participate in this study. All listed authors gave explicit consent to submit. The work had the consent from the responsible authorities at the institutions where the work has been carried out.

Consent for publication

All listed authors have approved the final manuscript before submission, including the names and order of authors.

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Compliance with Ethical Standards

The present report did not include human subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, M., Meijer, O., Hunt, H. et al. Stress-induced Neuroinflammation of the Spinal Cord is Restrained by Cort113176 (Dazucorilant), A Specific Glucocorticoid Receptor Modulator. Mol Neurobiol 61, 1–14 (2024). https://doi.org/10.1007/s12035-023-03554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03554-x

Keywords

Navigation