Skip to main content

Advertisement

Log in

Genome-wide CRISPR–Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson’s disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn – monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw sequencing data have been deposited in the NCBI Sequence Read Archive (SRA: SRR14660095).

References

Uncategorized References

  1. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208. https://doi.org/10.1016/s0304-3940(98)00504-7

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473. https://doi.org/10.1073/pnas.95.11.6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dettmer U, Selkoe D, Bartels T (2016) New insights into cellular alpha-synuclein homeostasis in health and disease. Curr Opin Neurobiol 36:15–22. https://doi.org/10.1016/j.conb.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  5. Burre J (2015) The synaptic function of alpha-synuclein. J Parkinsons Dis 5(4):699–713. https://doi.org/10.3233/JPD-150642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41(32):10209–10217. https://doi.org/10.1021/bi020139h

    Article  CAS  PubMed  Google Scholar 

  7. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  8. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  9. Hellstrand E, Grey M, Ainalem ML, Ankner J, Forsyth VT, Fragneto G, Haertlein M, Dauvergne MT et al (2013) Adsorption of alpha-synuclein to supported lipid bilayers: positioning and role of electrostatics. ACS Chem Neurosci 4(10):1339–1351. https://doi.org/10.1021/cn400066t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grozdanov V, Bousset L, Hoffmeister M, Bliederhaeuser C, Meier C, Madiona K, Pieri L, Kiechle M et al (2019) Increased immune activation by pathologic alpha-Synuclein in Parkinson’s disease. Ann Neurol. https://doi.org/10.1002/ana.25557

  11. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  12. Braak H, Sandmann-Keil D, Gai W, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci Lett 265(1):67–69. https://doi.org/10.1016/s0304-3940(99)00208-6

    Article  CAS  PubMed  Google Scholar 

  13. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302(5651):1772–1775. https://doi.org/10.1126/science.1090439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, Kamadurai HB, Kim HT et al (2013) Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates alpha-synuclein toxicity in neurons. Science 342(6161):979–983. https://doi.org/10.1126/science.1245321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. https://doi.org/10.1073/pnas.0711018105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren CH, Kato T, Mitani S et al (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 17(19):2997–3009. https://doi.org/10.1093/hmg/ddn198

    Article  CAS  PubMed  Google Scholar 

  17. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868. https://doi.org/10.1126/science.1067389

    Article  CAS  PubMed  Google Scholar 

  18. Harrington AJ, Yacoubian TA, Slone SR, Caldwell KA, Caldwell GA (2012) Functional analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of Parkinson’s disease. J Neurosci 32(6):2142–2153. https://doi.org/10.1523/JNEUROSCI.2606-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moree B, Yin G, Lazaro DF, Munari F, Strohaker T, Giller K, Becker S, Outeiro TF et al (2015) Small molecules detected by second-harmonic generation modulate the conformation of monomeric alpha-synuclein and reduce its aggregation in cells. J Biol Chem 290(46):27582–27593. https://doi.org/10.1074/jbc.M114.636027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F et al (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125(6):795–813. https://doi.org/10.1007/s00401-013-1114-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pujols J, Pena-Diaz S, Lazaro DF, Peccati F, Pinheiro F, Gonzalez D, Carija A, Navarro S et al (2018) Small molecule inhibits alpha-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc Natl Acad Sci U S A 115(41):10481–10486. https://doi.org/10.1073/pnas.1804198115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollerhage M, Moebius C, Melms J, Chiu WH, Goebel JN, Chakroun T, Koeglsperger T, Oertel WH et al (2017) Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep 7(1):11469. https://doi.org/10.1038/s41598-017-11664-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286. https://doi.org/10.1038/nprot.2006.201

  24. Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3(4):e1867. https://doi.org/10.1371/journal.pone.0001867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D (2013) In vivo cross-linking reveals principally oligomeric forms of alpha-synuclein and beta-synuclein in neurons and non-neural cells. J Biol Chem 288(9):6371–6385. https://doi.org/10.1074/jbc.M112.403311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seipold L, Damme M, Prox J, Rabe B, Kasparek P, Sedlacek R, Altmeppen H, Willem M et al (2017) Tetraspanin 3: a central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. Biochim Biophys Acta Mol Cell Res 1864(1):217–230. https://doi.org/10.1016/j.bbamcr.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  28. Kozik P, Francis RW, Seaman MN, Robinson MS (2010) A screen for endocytic motifs. Traffic 11(6):843–855. https://doi.org/10.1111/j.1600-0854.2010.01056.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013. https://doi.org/10.1074/jbc.M300227200

    Article  CAS  PubMed  Google Scholar 

  30. Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M et al (2017) Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers. Science 358(6369):1440–1443. https://doi.org/10.1126/science.aan6160

    Article  CAS  PubMed  Google Scholar 

  31. Thiede-Stan NK, Tews B, Albrecht D, Ristic Z, Ewers H, Schwab ME (2015) Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. J Cell Sci 128(19):3583–3596. https://doi.org/10.1242/jcs.167981

    Article  CAS  PubMed  Google Scholar 

  32. Masaracchia C, Hnida M, Gerhardt E, Lopes da Fonseca T, Villar-Pique A, Branco T, Stahlberg MA, Dean C et al (2018) Membrane binding, internalization, and sorting of alpha-synuclein in the cell. Acta Neuropathol Commun 6(1):79. https://doi.org/10.1186/s40478-018-0578-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL (2018) Regulation of clathrin-mediated endocytosis. Annu Rev Biochem 87:871–896. https://doi.org/10.1146/annurev-biochem-062917-012644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851. https://doi.org/10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500. https://doi.org/10.1038/emboj.2011.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem 276(29):27441–27448. https://doi.org/10.1074/jbc.M101318200

    Article  CAS  PubMed  Google Scholar 

  37. Eisbach SE, Outeiro TF (2013) Alpha-synuclein and intracellular trafficking: impact on the spreading of Parkinson’s disease pathology. J Mol Med (Berl) 91(6):693–703. https://doi.org/10.1007/s00109-013-1038-9

    Article  CAS  PubMed  Google Scholar 

  38. Dalfo E, Gomez-Isla T, Rosa JL, Nieto Bodelon M, Cuadrado Tejedor M, Barrachina M, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63(4):302–313. https://doi.org/10.1093/jnen/63.4.302

    Article  CAS  PubMed  Google Scholar 

  39. Shi MM, Shi CH, Xu YM (2017) Rab GTPases: the key players in the molecular pathway of Parkinson’s disease. Front Cell Neurosci 11:81. https://doi.org/10.3389/fncel.2017.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T et al (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25(23):5544–5552. https://doi.org/10.1523/JNEUROSCI.0482-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S et al (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110(10):1429–1439. https://doi.org/10.1172/JCI15777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896. https://doi.org/10.1523/JNEUROSCI.3809-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karpinar DP, Balija MB, Kugler S, Opazo F, Rezaei-Ghaleh N, Wender N, Kim HY, Taschenberger G et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28(20):3256–3268. https://doi.org/10.1038/emboj.2009.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199. https://doi.org/10.1073/pnas.1100976108

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102. https://doi.org/10.1016/s0022-2836(02)00735-0

    Article  CAS  PubMed  Google Scholar 

  46. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328. https://doi.org/10.1126/science.1129462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, Noble W, Hanger DP et al (2017) alpha-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca(2+) homeostasis and mitochondrial ATP production. Acta Neuropathol 134(1):129–149. https://doi.org/10.1007/s00401-017-1704-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung JY, Lee SJ, Lee SH, Jung YS, Ha NC, Seol W, Park BJ (2011) Direct interaction of alpha-synuclein and AKT regulates IGF-1 signaling: implication of Parkinson disease. Neurosignals 19(2):86–96. https://doi.org/10.1159/000325028

    Article  CAS  PubMed  Google Scholar 

  49. Currais A, Hortobagyi T, Soriano S (2009) The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging (Albany NY) 1(4):363–371. https://doi.org/10.18632/aging.100045

    Article  CAS  PubMed  Google Scholar 

  50. Kao SY (2009) Rescue of alpha-synuclein cytotoxicity by insulin-like growth factors. Biochem Biophys Res Commun 385(3):434–438. https://doi.org/10.1016/j.bbrc.2009.05.089

    Article  CAS  PubMed  Google Scholar 

  51. Tiwari-Woodruff SK, Kaplan R, Kornblum HI, Bronstein JM (2004) Developmental expression of OAP-1/Tspan-3, a member of the tetraspanin superfamily. J Neurosci Res 77(2):166–173. https://doi.org/10.1002/jnr.20141

    Article  CAS  PubMed  Google Scholar 

  52. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020

    Article  CAS  PubMed  Google Scholar 

  53. Charrin S, Jouannet S, Boucheix C, Rubinstein E (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648. https://doi.org/10.1242/jcs.154906

    Article  CAS  PubMed  Google Scholar 

  54. Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H et al (1998) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20(5):905–915. https://doi.org/10.1016/s0896-6273(00)80472-9

    Article  CAS  PubMed  Google Scholar 

  55. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7(6):449–456. https://doi.org/10.1038/nrm1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X (2020) TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. Elife 9. https://doi.org/10.7554/eLife.56793

  58. Yuan NN, Cai CZ, Wu MY, Zhu Q, Su H, Li M, Ren J et al (2019) Canthin-6-one accelerates alpha-synuclein degradation by enhancing UPS activity: drug target identification by CRISPR-Cas9 whole genome-wide screening technology. Front Pharmacol 10:16. https://doi.org/10.3389/fphar.2019.00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cai M, Li S, Shuai Y, Li J, Tan J, Zeng Q (2019) Genome-wide CRISPR-Cas9 viability screen reveals genes involved in TNF-alpha-induced apoptosis of human umbilical vein endothelial cells. J Cell Physiol 234(6):9184–9193. https://doi.org/10.1002/jcp.27595

    Article  CAS  PubMed  Google Scholar 

  60. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  61. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS et al (2014) MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15(12):554. https://doi.org/10.1186/s13059-014-0554-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim S, Yun SP, Lee S, Umanah GE, Bandaru VVR, Yin X, Rhee P, Karuppagounder SS et al (2018) GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115(4):798–803. https://doi.org/10.1073/pnas.1700465115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Imberdis T, Fanning S, Newman A, Ramalingam N, Dettmer U (2019) Studying alpha-Synuclein conformation by intact-cell cross-linking. Methods Mol Biol 1948:77–91. https://doi.org/10.1007/978-1-4939-9124-2_8

    Article  CAS  PubMed  Google Scholar 

  64. Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y et al (2016) BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem 291(41):21616–21629. https://doi.org/10.1074/jbc.M116.733410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang J, Lei H, Chen Y, Ma YT, Jiang F, Tan J, Zhang Y, Li JD (2017) Enzymatic O-GlcNAcylation of alpha-synuclein reduces aggregation and increases SDS-resistant soluble oligomers. Neurosci Lett 655:90–94. https://doi.org/10.1016/j.neulet.2017.06.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Zhuohua Zhang, School of Life Sciences, Central South University, for the discussion and suggestions and Professor Jiada Li from the School of Life Sciences, Central South University, for his support in the purification of α-synuclein.

We are grateful for resources from the High Performance Computing Center of Central South University.

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA0805200), National Natural Science Foundation of China (Grant No. 82171258), Changsha Science and Technology Foundation (Grant No. kq2004083), the Innovative Team Program 2019RS1010 from the Department of Science & Technology of Hunan Province, the Innovation-Driven Team Project 2020CX016 from Central South University, NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, No. KF2021001. and Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0234, 2023ZZTS0254).

Author information

Authors and Affiliations

Authors

Contributions

Designed the study: TJQ, HJJ, GJF. Performed experiments: HJJ, GXJ, XPQ. Analyzed the data: HJJ, TJQ. Drafted the manuscript: TJQ, HJJ. All authors critically revised the manuscript and approved the final version.

Corresponding author

Correspondence to Jieqiong Tan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 660 kb)

ESM 2

(PDF 108 kb)

ESM 3

(PDF 167 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Guan, X., Zhao, M. et al. Genome-wide CRISPR–Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers. Mol Neurobiol 60, 6731–6747 (2023). https://doi.org/10.1007/s12035-023-03495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03495-5

Keywords

Navigation