Skip to main content
Log in

Roles of Adenosine Receptor (subtypes A1 and A2A) in Cuprizone-Induced Hippocampal Demyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hippocampal demyelination in multiple sclerosis (MS) has been linked with cognitive deficits, however, patients could benefit from treatment that induces oligodendroglial cell function and promotes remyelination. We investigated the role of A1 and A2A adenosine receptors (AR) in regulating oligodendrocyte precursor cells (OPCs) and myelinating oligodendrocyte (OL) in the demyelinated hippocampus using the cuprizone model of MS. Spatial learning and memory were assessed in wild type C57BL/6 mice (WT) or C57BL/6 mice with global deletion of A1 (A1AR-/-) or A2A AR (A2AAR-/-) fed standard or cuprizone diet (CD) for four weeks. Histology, immunofluorescence, Western blot and TUNEL assays were performed to evaluate the extent of demyelination and apoptosis in the hippocampus. Deletion of A1 and A2A AR alters spatial learning and memory. In A1AR-/- mice, cuprizone feeding led to severe hippocampal demyelination, A2AAR-/- mice had a significant increase in myelin whereas WT mice had intermediate demyelination. The A1AR-/- CD-fed mice displayed significant astrocytosis and decreased expression of NeuN and MBP, whereas these proteins were increased in the A2AAR-/- CD mice. Furthermore, Olig2 was upregulated in A1AR-/- CD-fed mice compared to WT mice fed the standard diet. TUNEL staining of brain sections revealed a fivefold increase in the hippocampus of A1AR-/- CD-fed mice. Also, WT mice fed CD showed a significant decrease expression of A1 AR. A1 and A2A AR are involved in OPC/OL functions with opposing roles in myelin regulation in the hippocampus. Thus, the neuropathological findings seen in MS may be connected to the depletion of A1 AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The supporting data of this study are available from the corresponding author upon reasonable request.

References

  1. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587. https://doi.org/10.1007/978-3-540-89615-9_17

    Article  CAS  Google Scholar 

  2. Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC, Weiner HL (2017) Disruption of the ATP/adenosine balance in CD39-/- mice is associated with handling-induced seizures. Immunol 152(4):589–601

    Article  CAS  Google Scholar 

  3. Sebastião AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534. https://doi.org/10.1007/978-3-540-89615-9_16

    Article  CAS  Google Scholar 

  4. Kerkhofs A, Canas PM, Timmerman AJ, Heistek TS, Real JI, Xavier C, Cunha RA, Mansvelder HD, Ferreira SG (2018) Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Front Pharmacol 9:133. https://doi.org/10.3389/fphar.2018.00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cunha RA (2005) Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1(2):111–134. https://doi.org/10.1007/s11302-005-0649-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linden J, Cekic C (2012) Regulation of lymphocyte functions by adenosine. Arterioscler Thromb Vasc Biol 32(9):2097–2103. https://doi.org/10.1161/ATVBAHA.111.226837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kashfi S, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M (2017) A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair. Mol Neurobiol 54(10):8128–8139. https://doi.org/10.1007/s12035-016-0292-6

    Article  CAS  PubMed  Google Scholar 

  8. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264. https://doi.org/10.1038/nrd1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haskó G, Pacher P, Deitch EA, Vizi ES (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113(2):264–275. https://doi.org/10.1016/j.pharmthera.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Sachdeva S, Gupta M (2013) Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 21(3):245–253. https://doi.org/10.1016/j.jsps.2012.05.011

    Article  PubMed  Google Scholar 

  11. Haskó G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26(10):511–516. https://doi.org/10.1016/j.tips.2005.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abbracchio MP, Ceruti S (2007) P1 receptors and cytokine secretion. Purinergic Signal 3(1–2):13–25. https://doi.org/10.1007/s11302-006-9033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lintermans LL, Stegeman CA, Heeringa P, Abdulahad WH (2014) T cells in vascular inflammatory diseases. Front Immunol 5:504. https://doi.org/10.3389/fimmu.2014.00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deuchars SA, Brooke RE, Deuchars J (2001) Adenosine A1 receptors reduce release from excitatory but not inhibitory synaptic inputs onto lateral horn neurons. J Neurosci 21(16):6308–6320. https://doi.org/10.1523/JNEUROSCI.21-16-06308.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A1 adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27(3):275–281

    Article  CAS  PubMed  Google Scholar 

  16. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Arch Pharmacol 362(4–5):364–374. https://doi.org/10.1007/s002100000313

    Article  CAS  Google Scholar 

  17. Conigrave AD, Fernando KC, Gu B, Tasevski V, Zhang W, Luttrell BM, Wiley JS (2001) P2Y(11) receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. Eur J Pharmacol 426(3):157–163. https://doi.org/10.1016/s0014-2999(01)01222-5

    Article  CAS  PubMed  Google Scholar 

  18. Varani K, Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadossi M, Borea PA, Cadossi R (2017) Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators Inflamm 2017:2740963. https://doi.org/10.1155/2017/2740963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeLuca J, Chiaravalloti ND, Sandroff BM (2020) Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat Rev Neurol 16(6):319–332. https://doi.org/10.1038/s41582-020-0355-1

    Article  PubMed  Google Scholar 

  20. Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859. https://doi.org/10.1007/s00401-013-1112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grzegorski T, Losy J (2019) Multiple sclerosis-the remarkable story of a baffling disease. Rev Neurosci 30(5):511–526. https://doi.org/10.1515/revneuro-2018-0074

    Article  PubMed  Google Scholar 

  22. Baltan S, Jawaid SS, Chomyk AM et al (2021) Neuronal hibernation following hippocampal demyelination. Acta Neuropathol Commun 9:34. https://doi.org/10.1186/s40478-021-01130-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubey D, Sguigna P, Stüve O (2016) Managing Disability in Progressive Multiple Sclerosis. Curr Treat Options Neurol 18(6):27. https://doi.org/10.1007/s11940-016-0412-7

    Article  PubMed  Google Scholar 

  24. Mills JH, Alabanza LM, Mahamed DA, Bynoe MS (2012) Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J Neuroinflammation 9:193. https://doi.org/10.1186/1742-2094-9-193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. PNAS 105(27):9325–9330. https://doi.org/10.1073/pnas.0711175105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mills JH, Kim DG, Krenz A, Chen JF, Bynoe MS (2012) A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J Immunol 188(11):5713–5722. https://doi.org/10.4049/jimmunol.1200545

    Article  CAS  PubMed  Google Scholar 

  27. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505. https://doi.org/10.1016/j.neubiorev.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  28. Bihler K, Kress E, Esser S, Nyamoya S, Tauber SC, Clarner T, Stope MB, Pufe T, Brandenburg LO (2017) Formyl Peptide Receptor 1-Mediated glial cell activation in a mouse model of cuprizone-induced demyelination. J Mol Neurosci 62:232–243. https://doi.org/10.1007/s12031-017-0924-y

    Article  CAS  PubMed  Google Scholar 

  29. Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O (2019) Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases. Curr Neuropharmacol 17(2):129–141. https://doi.org/10.2174/1570159X15666170717120343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Komada M, Takao K, Miyakawa T (2008) Elevated Plus Maze for Mice. J Vis Exp (22):1088

  31. Ingersoll J, Moody M, Holland R, Kuegler W, Murrah C Jr, Winslow J, Reynolds N, Lloyd N, Dugan B, Hammock M, Houlé K, Clabough E (2018) Analyzing Spatial Learning and Prosocial Behavior in Mice Using the Barnes Maze and Damsel-in-Distress Paradigms. J Vis Exp 17(141). https://doi.org/10.3791/58008

  32. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96(e52434):1–6. https://doi.org/10.3791/52434

    Article  Google Scholar 

  33. Jang M, Lee MJ, Kim CS, Cho IH (2013) Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms. Evid Based Complement Alternat Med 2013:237207. https://doi.org/10.1155/2013/237207

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka T, Murakami K, Bando Y, Yoshida S (2013) Minocycline reduces remyelination by suppressing ciliary neurotrophic factor expression after cuprizone-induced demyelination. J Neurochem 127(2):259–270. https://doi.org/10.1111/jnc.12289

    Article  CAS  PubMed  Google Scholar 

  36. Yamate-Morgan H, Lauderdale K, Horeczko J, Merchant U, Tiwari-Woodruff SK (2019) Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin. Neurosci 406:667–683. https://doi.org/10.1016/j.neuroscience.2019.01.038

    Article  CAS  Google Scholar 

  37. Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell S, Bartlett CA, Anyaegbu C, Fitzgerald M (2021) Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 11:22594. https://doi.org/10.1038/s41598-021-01963-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelley KW, Bluthé RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, Broussard SR (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17(Suppl 1):S112–S118. https://doi.org/10.1016/s0889-1591(02)00077-6

    Article  CAS  PubMed  Google Scholar 

  39. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167. https://doi.org/10.1038/nri2015

    Article  CAS  PubMed  Google Scholar 

  40. Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH (2011) Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurol 77(3):212–218. https://doi.org/10.1212/WNL.0b013e318225ae07

    Article  CAS  Google Scholar 

  41. Moharregh-Khiabani D, Blank A, Skripuletz T, Miller E, Kotsiari A, Gudi V, Stangel M (2010) Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PloS One 5(7):e11769. https://doi.org/10.1371/journal.pone.0011769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, Wang H, Bookheimer SY (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131(4):1134–1141. https://doi.org/10.1093/brain/awn030

    Article  CAS  PubMed  Google Scholar 

  43. Nooraei A, Khazaeel K, Darvishi M, Ghotbeddin Z, Basir Z (2022) Dimorphic evaluation of hippocampal changes in rat model of demyelination: A comparative functional, morphometric, and histological study. Brain Behav 12:e2723. https://doi.org/10.1002/brb3.2723

    Article  CAS  Google Scholar 

  44. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49(5):650–658

    Article  CAS  PubMed  Google Scholar 

  45. Delarasse C, Gaspera B, Lu CW, Lachapelle F, Gelot A, Rodriguez D, Dautigny A, Genain C, Pham-Dinh D (2006) Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates. J Neurochem 98(6):1707–1717. https://doi.org/10.1111/j.1471-4159.2006.04053.x

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Castaneda A, Gaultier A (2016) Adult oligodendrocyte progenitor cells - Multifaceted regulators of the CNS in health and disease. Brain Behav Immun 57:1–7. https://doi.org/10.1016/j.bbi.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173. https://doi.org/10.1056/NEJMoa010994

    Article  PubMed  Google Scholar 

  48. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Brück W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(7):1749–1758. https://doi.org/10.1093/brain/awn096

    Article  CAS  PubMed  Google Scholar 

  49. Torkildsen O, Brunborg LA, Myhr KM, Bø L (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76. https://doi.org/10.1111/j.1600-0404.2008.01036.x

    Article  CAS  PubMed  Google Scholar 

  50. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Ann Rev Neurosci 31:535–561. https://doi.org/10.1146/annurev.neuro.30.051606.094309

    Article  CAS  PubMed  Google Scholar 

  51. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283. https://doi.org/10.1038/nrn2797

    Article  CAS  PubMed  Google Scholar 

  52. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63(17):1945–1961. https://doi.org/10.1007/s00018-006-6094-7

    Article  CAS  PubMed  Google Scholar 

  53. Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R (2015) Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2(7):711–721. https://doi.org/10.1002/acn3.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138. https://doi.org/10.1016/j.brainres.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  55. Traiffort E, Kassoussi A, Zahaf A, Laouarem Y (2020) Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions Front. Cell Neurosci 14:79. https://doi.org/10.3389/fncel.2020.00079

    Article  CAS  Google Scholar 

  56. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin-from mechanisms to experimental medicines. Nat Rev Neurosci 18:753–769. https://doi.org/10.1038/nrn.2017.136

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received support (for subsistence only) from the US Department of States, Bureau of Educational and Cultural Affairs via the Fulbright Foreign Program awarded to OEA for a Research Visit to Cornell University.

Author information

Authors and Affiliations

Authors

Contributions

OEA carried out the experiment, analyzed the data, drafted the manuscript, and designed the figures. MSB conceived the original idea and supervised the experiments. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Olamide E. Adebiyi or Margaret S. Bynoe.

Ethics declarations

Conflict of Interest

We have no conflict of interest to declare.

Ethics Approval

All the mice were housed in a sterile facility and maintained following National Institute of Health guidelines for care and use of laboratory animals. The study was approved by the Institutional Animal Care and Use Committee of our university (Protocol # 2008–0092).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebiyi, O.E., Bynoe, M.S. Roles of Adenosine Receptor (subtypes A1 and A2A) in Cuprizone-Induced Hippocampal Demyelination. Mol Neurobiol 60, 5878–5890 (2023). https://doi.org/10.1007/s12035-023-03440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03440-6

Keywords

Navigation