Skip to main content
Log in

Inhibition of the NLRP3 Inflammasome Activation/Assembly through the Activation of the PI3K Pathway by Naloxone Protects Neural Stem Cells from Ischemic Condition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Naloxone is a well-known opioid antagonist and has been suggested to have neuroprotective effects in cerebral ischemia. We investigated whether naloxone exhibits anti-inflammatory and neuroprotective effects in neural stem cells (NSCs) injured by oxygen-glucose deprivation (OGD), whether it affects the NOD-like receptor protein 3 (NLRP3) inflammasome activation/assembly, and whether the role of the phosphatidylinositol 3-kinase (PI3K) pathway is important in the control of NLRP3 inflammasome activation/assembly by naloxone. Primary cultured NSCs were subjected to OGD and treated with different concentrations of naloxone. Cell viability, proliferation, and the intracellular signaling proteins associated with the PI3K pathway and NLRP3 inflammasome activation/assembly were evaluated in OGD-injured NSCs. OGD significantly reduced survival, proliferation, and migration and increased apoptosis of NSCs. However, treatment with naloxone significantly restored survival, proliferation, and migration and decreased apoptosis of NSCs. Moreover, OGD markedly increased NLRP3 inflammasome activation/assembly and cleaved caspase-1 and interleukin-1β levels in NSCs, but naloxone significantly attenuated these effects. These neuroprotective and anti-inflammatory effects of naloxone were eliminated when cells were treated with PI3K inhibitors. Our results suggest that NLRP3 inflammasome is a potential therapeutic target and that naloxone reduces ischemic injury in NSCs by inhibiting NLRP3 inflammasome activation/assembly mediated by the activation of the PI3K signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in the current study are available from the corresponding authors on reasonable request.

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C, Global Burden of Diseases I, Risk Factors S (2014) the GBDSEG Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383 (9913):245–254. doi:https://doi.org/10.1016/s0140-6736(13)61953-4

  2. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97. https://doi.org/10.1186/1479-5876-7-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10(1):95–112. https://doi.org/10.1111/j.1750-3639.2000.tb00247.x

    Article  PubMed  Google Scholar 

  4. McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27(16):4403–4412. https://doi.org/10.1523/JNEUROSCI.5376-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elkind MS, Cheng J, Rundek T, Boden-Albala B, Sacco RL (2004) Leukocyte count predicts outcome after ischemic stroke: the Northern Manhattan Stroke Study. J Stroke Cerebrovasc Dis 13(5):220–227. https://doi.org/10.1016/j.jstrokecerebrovasdis.2004.07.004

    Article  PubMed  Google Scholar 

  6. Baird TA, Parsons MW, Barber PA, Butcher KS, Desmond PM, Tress BM, Colman PG, Jerums G, Chambers BR, Davis SM (2002) The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J Clin Neurosci 9(6):618–626. https://doi.org/10.1054/jocn.2002.1081

    Article  PubMed  Google Scholar 

  7. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245. https://doi.org/10.1016/j.surneu.2005.12.028

    Article  PubMed  Google Scholar 

  8. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y (2017) NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 66(1):17–24. https://doi.org/10.1007/s00011-016-0981-7

    Article  CAS  PubMed  Google Scholar 

  9. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12(4):941–966. https://doi.org/10.1016/j.arr.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  10. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13). https://doi.org/10.3390/ijms20133328

  11. Ismael S, Zhao L, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8(1):5971. https://doi.org/10.1038/s41598-018-24350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haas S, Weidner N, Winkler J (2005) Adult stem cell therapy in stroke. Curr Opin Neurol 18(1):59–64. https://doi.org/10.1097/00019052-200502000-00012

    Article  PubMed  Google Scholar 

  13. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288(5471):1660–1663. https://doi.org/10.1126/science.288.5471.1660

    Article  CAS  PubMed  Google Scholar 

  14. Qi D, Liu H, Niu J, Fan X, Wen X, Du Y, Mou J, Pei D, Liu Z, Zong Z, Wei X, Song Y (2012) Heat shock protein 72 inhibits c-Jun N-terminal kinase 3 signaling pathway via Akt1 during cerebral ischemia. J Neurol Sci 317(1–2):123–129. https://doi.org/10.1016/j.jns.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  15. Kim YS, Yoo A, Son JW, Kim HY, Lee YJ, Hwang S, Lee KY, Lee YJ, Ayata C, Kim HH, Koh SH (2016) Early activation of phosphatidylinositol 3-kinase after ischemic stroke reduces infarct volume and improves long-term behavior. Molecular neurobiology: in press. https://doi.org/10.1007/s12035-014-9030-0

  16. Koh SH, Lo EH (2015) The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J Clin Neurol 11(4):297–304. https://doi.org/10.3988/jcn.2015.11.4.297

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34(5):942–951. https://doi.org/10.1007/s11064-008-9848-9

    Article  CAS  PubMed  Google Scholar 

  18. Noh MY, Kim YS, Lee KY, Lee YJ, Kim SH, Yu HJ, Koh SH (2013) The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD(+). Mol Neurobiol 47(2):757–769. https://doi.org/10.1007/s12035-012-8382-6

    Article  CAS  PubMed  Google Scholar 

  19. Bradberry JC, Raebel MA (1981) Continuous infusion of naloxone in the treatment of narcotic overdose. Drug Intell Clin Pharm 15(12):945–950. https://doi.org/10.1177/106002808101501205

    Article  CAS  PubMed  Google Scholar 

  20. Olinger CP, Adams HP Jr, Brott TG, Biller J, Barsan WG, Toffol GJ, Eberle RW, Marler JR (1990) High-dose intravenous naloxone for the treatment of acute ischemic stroke. Stroke 21(5):721–725. https://doi.org/10.1161/01.str.21.5.721

    Article  CAS  PubMed  Google Scholar 

  21. Jabaily J, Davis JN (1984) Naloxone administration to patients with acute stroke. Stroke 15(1):36–39. https://doi.org/10.1161/01.str.15.1.36

    Article  CAS  PubMed  Google Scholar 

  22. Liao SL, Chen WY, Raung SL, Chen CJ (2003) Neuroprotection of naloxone against ischemic injury in rats: role of mu receptor antagonism. Neurosci Lett 345(3):169–172. https://doi.org/10.1016/s0304-3940(03)00540-8

    Article  CAS  PubMed  Google Scholar 

  23. Jan WC, Chen CH, Hsu K, Tsai PS, Huang CJ (2011) L-type calcium channels and mu-opioid receptors are involved in mediating the anti-inflammatory effects of naloxone. J Surg Res 167(2):e263–272. https://doi.org/10.1016/j.jss.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  24. Wang TY, Su NY, Shih PC, Tsai PS, Huang CJ (2014) Anti-inflammation effects of naloxone involve phosphoinositide 3-kinase delta and gamma. J Surg Res 192(2):599–606. https://doi.org/10.1016/j.jss.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  25. Lin HY, Chang YY, Kao MC, Huang CJ (2017) Naloxone inhibits nod-like receptor protein 3 inflammasome. J Surg Res 219:72–77. https://doi.org/10.1016/j.jss.2017.05.119

    Article  CAS  PubMed  Google Scholar 

  26. Le DA, Wu Y, Huang Z, Matsushita K, Plesnila N, Augustinack JC, Hyman BT, Yuan J, Kuida K, Flavell RA, Moskowitz MA (2002) Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci U S A 99(23):15188–15193. https://doi.org/10.1073/pnas.232473399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3(6):935–940. https://doi.org/10.1038/nprot.2008.55

    Article  CAS  PubMed  Google Scholar 

  28. Currle DS, Hu JS, Kolski-Andreaco A, Monuki ES (2007) Culture of mouse neural stem cell precursors. J visualized experiments: JoVE 2152. https://doi.org/10.3791/152

  29. Park HH, Lee KY, Kim S, Lee JW, Choi NY, Lee EH, Lee YJ, Lee SH, Koh SH (2014) Novel vaccine peptide GV1001 effectively blocks beta-amyloid toxicity by mimicking the extra-telomeric functions of human telomerase reverse transcriptase. Neurobiol Aging 35(6):1255–1274. https://doi.org/10.1016/j.neurobiolaging.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  30. Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1(4):290–295. https://doi.org/10.1038/1105

    Article  CAS  PubMed  Google Scholar 

  31. Choi YK, Maki T, Mandeville ET, Koh SH, Hayakawa K, Arai K, Kim YM, Whalen MJ, Xing C, Wang X, Kim KW, Lo EH (2016) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 22(11):1335–1341. https://doi.org/10.1038/nm.4188

    Article  CAS  PubMed  Google Scholar 

  32. Kim M, Moon S, Jeon HS, Kim S, Koh SH, Chang MS, Kim YM, Choi YK (2022) Dual effects of korean red ginseng on astrocytes and neural stem cells in traumatic brain injury: the HO-1-Tom20 axis as a putative target for mitochondrial function. Cells 11(5). https://doi.org/10.3390/cells11050892

  33. Kim M, Kim J, Moon S, Choi BY, Kim S, Jeon HS, Suh SW, Kim YM, Choi YK (2021) Korean red ginseng improves astrocytic mitochondrial function by upregulating HO-1-mediated AMPKalpha-PGC-1alpha-ERRalpha circuit after traumatic brain injury. Int J Mol Sci 22(23). https://doi.org/10.3390/ijms222313081

  34. Park HH, Han MH, Choi H, Lee YJ, Kim JM, Cheong JH, Ryu JI, Lee KY, Koh SH (2019) Mitochondria damaged by oxygen glucose deprivation can be restored through activation of the PI3K/Akt pathway and inhibition of calcium influx by amlodipine camsylate. Sci Rep 9(1):15717. https://doi.org/10.1038/s41598-019-52083-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon HS, Ha J, Kim JY, Park HH, Lee EH, Choi H, Lee KY, Lee YJ, Koh SH (2021) Telmisartan inhibits the NLRP3 inflammasome by activating the PI3K pathway in neural stem cells injured by oxygen-glucose deprivation. Mol Neurobiol 58(4):1806–1818. https://doi.org/10.1007/s12035-020-02253-1

    Article  CAS  PubMed  Google Scholar 

  36. Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108(5):1116–1125. https://doi.org/10.1111/j.1471-4159.2008.05837.x

    Article  CAS  PubMed  Google Scholar 

  37. Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1(1):8. https://doi.org/10.1186/scrt8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bimonte S, Barbieri A, Cascella M, Rea D, Palma G, Del Vecchio V, Forte CA, Del Prato F, Arra C, Cuomo A (2018) The effects of naloxone on human breast cancer progression: in vitro and in vivo studies on MDA.MB231 cells. Onco Targets Ther 11:185–191. https://doi.org/10.2147/OTT.S145780

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bimonte S, Barbieri A, Cascella M, Rea D, Palma G, Luciano A, Forte CA, Cuomo A, Arra C (2019) Naloxone counteracts the promoting tumor growth effects induced by morphine in an animal model of triple-negative breast cancer. In Vivo 33(3):821–825. https://doi.org/10.21873/invivo.11545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng W, Li Y, Hou X, Zhang N, Ma J, Ding F, Li F, Miao Z, Zhang Y, Qi Q, Li G, Shen Y, Liu J, Huang W, Wang Y (2014) HSP60 is involved in the neuroprotective effects of naloxone. Mol Med Rep 10(4):2172–2176. https://doi.org/10.3892/mmr.2014.2411

    Article  CAS  PubMed  Google Scholar 

  41. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 29(3):534–544. https://doi.org/10.1038/jcbfm.2008.143

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Chan C (2014) The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 15:6–15. https://doi.org/10.1016/j.arr.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  43. Zhou K, Shi L, Wang Y, Chen S, Zhang J (2016) Recent advances of the NLRP3 inflammasome in central nervous system disorders. J Immunol Res 2016:9238290. https://doi.org/10.1155/2016/9238290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lenart N, Brough D, Denes A (2016) Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 36(10):1668–1685. https://doi.org/10.1177/0271678X16662043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu SB, Mi WL, Wang YQ (2013) Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci Bull 29(6):779–787. https://doi.org/10.1007/s12264-013-1328-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34(4):660–667. https://doi.org/10.1038/jcbfm.2013.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zu J, Yu M, Song C, Wang Y, Qi S, Cui G (2017) Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  48. Hong P, Li FX, Gu RN, Fang YY, Lai LY, Wang YW, Tao T, Xu SY, You ZJ, Zhang HF (2018) Inhibition of NLRP3 inflammasome ameliorates cerebral ischemia-reperfusion injury in diabetic mice. Neural Plast 2018:9163521. doi:https://doi.org/10.1155/2018/9163521

  49. Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316. https://doi.org/10.3389/fimmu.2014.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun SC (2011) Non-canonical NF-kappaB signaling pathway. Cell Res 21(1):71–85. https://doi.org/10.1038/cr.2010.177

    Article  CAS  PubMed  Google Scholar 

  51. Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319:82–95. https://doi.org/10.1111/nyas.12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tu XK, Yang WZ, Shi SS, Wang CH, Zhang GL, Ni TR, Chen CM, Wang R, Jia JW, Song QM (2010) Spatio-temporal distribution of inflammatory reaction and expression of TLR2/4 signaling pathway in rat brain following permanent focal cerebral ischemia. Neurochem Res 35(8):1147–1155. https://doi.org/10.1007/s11064-010-0167-6

    Article  CAS  PubMed  Google Scholar 

  53. Guan T, Liu Q, Qian Y, Yang H, Kong J, Kou J, Yu B (2013) Ruscogenin reduces cerebral ischemic injury via NF-kappaB-mediated inflammatory pathway in the mouse model of experimental stroke. Eur J Pharmacol 714(1–3):303–311. https://doi.org/10.1016/j.ejphar.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  54. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115(12):1599–1608. https://doi.org/10.1161/CIRCULATIONAHA.106.603431

    Article  CAS  PubMed  Google Scholar 

  55. Stevens CW, Aravind S, Das S, Davis RL (2013) Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol 168(6):1421–1429. https://doi.org/10.1111/bph.12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anttila JE, Albert K, Wires ES, Matlik K, Loram LC, Watkins LR, Rice KC, Wang Y, Harvey BK, Airavaara M (2018) Post-stroke intranasal (+)-naloxone delivery reduces microglial activation and improves behavioral recovery from ischemic injury. eNeuro 5(2). https://doi.org/10.1523/ENEURO.0395-17.2018

  57. Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, Watkins LR (2016) Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 173(5):856–869. https://doi.org/10.1111/bph.13394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams DL, Ozment-Skelton T, Li C (2006) Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 25(5):432–439. https://doi.org/10.1097/01.shk.0000209542.76305.55

    Article  CAS  PubMed  Google Scholar 

  59. Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, Vogel SN (2009) TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 85(6):966–977. https://doi.org/10.1189/jlb.1208763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukao T, Koyasu S (2003) PI3K and negative regulation of TLR signaling. Trends Immunol 24(7):358–363. https://doi.org/10.1016/s1471-4906(03)00139-x

    Article  CAS  PubMed  Google Scholar 

  61. Ha T, Hu Y, Liu L, Lu C, McMullen JR, Kelley J, Kao RL, Williams DL, Gao X, Li C (2010) TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Cardiovasc Res 87(4):694–703. https://doi.org/10.1093/cvr/cvq116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, Izumo S, Kelley J, Gao X, Browder W, Williams DL, Kao RL, Li C (2008) Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res 78(3):546–553. https://doi.org/10.1093/cvr/cvn037

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Cai X, Liu J, Jia Z, Jiao J, Zhang J, Li C, Li J, Tang XD (2013) CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kalpha-Akt signaling. PLoS ONE 8(4):e62373. https://doi.org/10.1371/journal.pone.0062373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li C, Ha T, Kelley J, Gao X, Qiu Y, Kao RL, Browder W, Williams DL (2004) Modulating toll-like receptor mediated signaling by (1–>3)-beta-D-glucan rapidly induces cardioprotection. Cardiovasc Res 61(3):538–547. https://doi.org/10.1016/j.cardiores.2003.09.007

    Article  CAS  PubMed  Google Scholar 

  65. Luo X, Zeng H, Fang C, Zhang BH (2021) N-acetylserotonin derivative exerts a neuroprotective effect by inhibiting the NLRP3 inflammasome and activating the PI3K/Akt/Nrf2 pathway in the model of hypoxic-ischemic brain damage. Neurochem Res 46(2):337–348. https://doi.org/10.1007/s11064-020-03169-x

    Article  CAS  PubMed  Google Scholar 

  66. Wang K, Zhang Y, Cao Y, Shi Z, Lin Y, Chen Y, Zhao H, Liu X (2020) Glycyrrhetinic acid alleviates acute lung injury by PI3K/AKT suppressing macrophagic Nlrp3 inflammasome activation. Biochem Biophys Res Commun 532(4):555–562. https://doi.org/10.1016/j.bbrc.2020.08.044

    Article  CAS  PubMed  Google Scholar 

  67. Zhao W, Shi CS, Harrison K, Hwang IY, Nabar NR, Wang M, Kehrl JH (2020) AKT regulates NLRP3 inflammasome activation by phosphorylating NLRP3 serine 5. J Immunol 205(8):2255–2264. https://doi.org/10.4049/jimmunol.2000649

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Xiao X, Han X, Yao L, Lan W (2022) A new therapeutic trend: natural medicine for ameliorating ischemic stroke via PI3K/Akt signaling pathway. Molecules 27:7963. https://doi.org/10.3390/molecules27227963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Biasizzo M, Kopitar-Jerala N (2020) Interplay between NLRP3 inflammasome and autophagy. Front Immunol 11:591803. https://doi.org/10.3389/fimmu.2020.591803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lv S, Wang H, Li X (2021) The role of the interplay between autophagy and NLRP3 inflammasome in metabolic disorders. Front Cell Dev Biol 16:634118. https://doi.org/10.3389/fcell.2021.634118

    Article  Google Scholar 

  71. De Filippis L, Binda E (2012) Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med 1(4):298–308. https://doi.org/10.5966/sctm.2011-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI20C0253, HU21C0007, and HU21C0113) and the Medical Research Center (2017R1A5A2015395), and was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1F1A1072546, 2022R1A2C1092835).

Author information

Authors and Affiliations

Authors

Contributions

J.Y.K., M.H., N.Y.C., and S.H.K. designed the study; M.H. and N.Y.C. performed experiments; J.Y.K. and S.H.K. analyzed and interpreted data; M.H. and N.Y.C. generated figures; J.Y.K. and M.H. wrote original draft; S.H.K. revised manuscript; All authors provided critical insight and review of the manuscript. All authors have read and agreed to published version of the manuscript.

Corresponding author

Correspondence to Seong-Ho Koh.

Ethics declarations

Ethics Approval

All animal procedures were conducted in accordance with Hanyang University’s guidelines for the care and use of laboratory animals, and approved by the Institutional Animal Care and Use Committee (IACUC) of Hanyang University (2019-0162 A and 2021-0039 A). All efforts were made to minimize the number of animals used and animal suffering.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

: Effects of naloxone on the viability and cytotoxicity of hNSCs damaged by OGD. (A) hNSCs viability was decreased after 16 h of OGD but significantly increased after naloxone treatment. (B) Cytotoxicity of hNSCs also increased after OGD but was significantly reduced by naloxone. All data are represented as mean (% of control) ± standard deviation of a minimum of three independent experiments and were analyzed using Tukey’s test after a one-way analysis of variance (n ≥ 3). *p < 0.05, **p < 0.01 (vs. the control group); and #p < 0.05, ##p < 0.01 (vs. the group subjected to OGD alone). hNSCs, human neural stem cells; OGD, oxygen-glucose deprivation.

Supplementary Fig. 2

: Effects of OGD on the expression of NLRP3 inflammasome related factors at various time points. Alterations of NLRP3 (A) and IL-1β (B) were compared in OGD-treated NSCs over time via western blotting. Their expression was the highest at 6 h after exposure to OGD. All data are shown as the mean (% of control) ± standard deviation of a minimum of three independent experiments and were analyzed using Student’s t-test (n ≥ 3). *p < 0.05, **p < 0.01 (vs. the control group). OGD, oxygen-glucose deprivation; NLRP3, NOD-like receptor protein 3.

Supplementary Fig. 3

: Original western blotting images to demonstrate that the antibodies are specific. Uncut membrane images showing molecular weight of protein bands (A–K) and Ponceau S staining images of the western blotting membrane (L). (M) Western blotting involving only secondary antibody labeling, without primary antibody, to confirm the specificity of antibodies.

Supplementary Fig. 4

: Western blotting images containing protein marker. (A, B) A protein marker was used to identify the molecular weight of each protein band, but markers were not detected in the chemical reaction.

Supplementary Fig. 5

: The effect of PI3K pathway and naloxone on the OGD-injured NSCs through Aim2 inflammasome. (A-B) Aim2 inflammasome protein expression levels through western blotting. Data are represented as the mean (% of control) ± standard deviation of the minimum of three independent experiments and were analyzed using Tukey’s test after one-way analysis of variance (n ≥ 3). *p < 0.05, **p < 0.01 (vs. the control group); #p < 0.05, ##p < 0.01 (vs. the group subjected to OGD alone); and p < 0.05, ††p < 0.01 (vs. the group subjected to OGD and 1 µM naloxone). PI3K, phosphatidylinositol 3-kinase; OGD, oxygen-glucose deprivation; NSCs, neural stem cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Hwang, M., Choi, NY. et al. Inhibition of the NLRP3 Inflammasome Activation/Assembly through the Activation of the PI3K Pathway by Naloxone Protects Neural Stem Cells from Ischemic Condition. Mol Neurobiol 60, 5330–5342 (2023). https://doi.org/10.1007/s12035-023-03418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03418-4

Keywords

Navigation