Skip to main content

Advertisement

Log in

Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic hyperammonemia is a main contributor to the cognitive and motor impairment in patients with hepatic encephalopathy. Sustained hyperammonemia induces the TNFα expression in Purkinje neurons, mediated by NF-κB activation. The aims were the following: (1) to assess if enhanced TrkB activation by BDNF is responsible for enhanced NF-κB activation in Purkinje neurons in hyperammonemic rats, (2) to assess if this is associated with increased content of NF-κB modulated proteins such as TNFα, HMGB1, or glutaminase I, (3) to assess if these changes are due to enhanced activation of the TNFR1-S1PR2-CCR2-BDNF-TrkB pathway, (4) to analyze if increased activation of NF-κB is mediated by the PI3K-AKT pathway. It is shown that, in the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons leading to activation of PI3K, which enhances phosphorylation of AKT and of IκB, leading to increased nuclear translocation of NF-κB which enhances TNFα, HMGB1, and glutaminase I content. To assess if the changes are due to enhanced activation of the TNFR1-S1PR2-CCR2 pathway, we blocked TNFR1 with R7050, S1PR2 with JTE-013, and CCR2 with RS504393. These changes are reversed by blocking TrkB, PI3K, or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway at any step. In hyperammonemic rats, increased levels of BDNF enhance TrkB activation in Purkinje neurons, leading to activation of the PI3K-AKT-IκB-NF-κB pathway which increased the content of glutaminase I, HMGB1, and TNFα. Enhanced activation of this TrkB-PI3K-AKT-NF-κB pathway would contribute to impairing the function of Purkinje neurons and motor function in hyperammonemic rats and likely in cirrhotic patients with minimal or clinical hepatic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All raw data used and analyzed for the current study are available from the corresponding author on reasonable request.

Abbreviations

CEBA:

Comite de Experimentación y Bienestar Animal

CCR2:

Receptor for CCL2

HE:

Hepatic encephalopathy

MHE:

Minimal hepatic encephalopathy

PI3K:

Phosphoinositide 3-kinases

RAGE:

Receptor for advanced glycation end products

S1PR2:

Sphingosine-1-phosphate receptor 2

SCA1:

Spinocerebellar ataxia type 1

TNFR1:

Receptor for TNFα

TrkB:

The receptor for BDNF

TLR4:

Toll-like receptor 4

References

  1. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

    Article  CAS  PubMed  Google Scholar 

  2. Shawcross DL, Davies NA, Williams R, Jalan R (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40(2):247–254. https://doi.org/10.1016/j.jhep.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  3. Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M, Olmo JA, Ortega J et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27(1):51–58. https://doi.org/10.1007/s11011-011-9269-3

    Article  CAS  PubMed  Google Scholar 

  4. Balzano T, Dadsetan S, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Malaguarnera M, Gil-Perotin S, Cubas-Nuñez L et al (2020) Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: Reversed by anti-TNFα treatment. J Hepatol 73(3):582–592. https://doi.org/10.1016/j.jhep.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M, Felipo V (2016) Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation 13:41. https://doi.org/10.1186/s12974-016-0505-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, Llansola M, Felipo V (2016) Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 13(1):83. https://doi.org/10.1186/s12974-016-0549-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V (2018) Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 69:386–398. https://doi.org/10.1016/j.bbi.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  8. Cabrera-Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro-Gonzalez L, García-García R, Mangas-Losada A et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270

    Article  CAS  PubMed  Google Scholar 

  9. Butz M, Timmermann L, Braun M, Groiss SJ, Wojtecki L, Ostrowski S, Krause H, Pollok B et al (2010) Motor impairment in liver cirrhosis without and with minimal hepatic encephalopathy. Acta Neurol Scand 122(1):27–35. https://doi.org/10.1111/j.1600-0404.2009.01246.x

    Article  CAS  PubMed  Google Scholar 

  10. Felipo V, Urios A, Giménez-Garzó C, Cauli O, Andrés-Costa MJ, González O, Serra MA, Sánchez-González J et al (2014) Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol 20(33):11815–11825. https://doi.org/10.3748/wjg.v20.i33.11815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hassan SS, Baumgarten TJ, Ali AM, Füllenbach ND, Jördens MS, Häussinger D, Butz M, Schnitzler A et al (2019) Cerebellar inhibition in hepatic encephalopathy. Clin Neurophysiol 130(6):886–892. https://doi.org/10.1016/j.clinph.2019.02.020

    Article  PubMed  Google Scholar 

  12. Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136(4):1359–67. https://doi.org/10.1053/j.gastro.2008.12.057. (e1-2)

    Article  CAS  PubMed  Google Scholar 

  13. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835. https://doi.org/10.1126/science.288.5472.1832

    Article  CAS  PubMed  Google Scholar 

  14. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, De Zeeuw CI, Konnerth A et al (2003) Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci 23(8):3469–3477. https://doi.org/10.1523/JNEUROSCI.23-08-03469.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez DV, Mark MD, Masseck O, Maejima T, Kuckelsberg D, Hyde RA, Krause M, Kruse W et al (2011) Herlitze S Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J Biol Chem 286(29):25848–58. https://doi.org/10.1074/jbc.M111.253674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou JH, Wang XT, Zhou L, Zhou L, Xu FX, Su LD, Wang H, Jia F et al (2017) Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor coordination, but not autistic-like behaviors. J Neurosci 37(47):11335–11352. https://doi.org/10.1523/JNEUROSCI.1223-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Redondo J, Kemp K, Hares K, Rice C, Scolding N, Wilkins A (2015) Purkinje cell pathology and loss in multiple sclerosis cerebellum. Brain Pathol 25(6):692–700. https://doi.org/10.1111/bpa.12230

    Article  CAS  PubMed  Google Scholar 

  18. Mavroudis I, Petridis F, Kazis D, Njau SN, Costa V, Baloyannis SJ (2019) Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 34(7–8):439–449. https://doi.org/10.1177/1533317519859200

    Article  PubMed  Google Scholar 

  19. Mavroudis IA, Petrides F, Manani M et al (2017) Purkinje cells pathology in schizophrenia. A morphometric approach. Rom J Morphol Embryol 58(2):419–424

    PubMed  Google Scholar 

  20. Llansola M, Montoliu C, Agusti A, Hernandez-Rabaza V, Cabrera-Pastor A, Gomez-Gimenez B, Malaguarnera M, Dadsetan S et al (2015) Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int 88:15–19. https://doi.org/10.1016/j.neuint.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  21. Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F et al (2020) Sustained hyperammonemia induces TNFα IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 17(1):70. https://doi.org/10.1186/s12974-020-01746-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qie S, Chu C, Li W, Wang C, Sang N (2014) ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 115(3):498–509. https://doi.org/10.1002/jcb.24684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crews FT, Vetreno RP (2016) Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl) 233(9):1543–57. https://doi.org/10.1007/s00213-015-3906-1

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):17023. https://doi.org/10.1038/sigtrans.2017.23

  25. Jiang X, Zhu D, Okagaki P, Lipsky R, Wu X, Banaudha K, Mearow K, Strauss KI et al (2003) N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann N Y Acad Sci 993:134–45. https://doi.org/10.1111/j.1749-6632.2003.tb07522.x. (discussion 159-60)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blondy S, Christou N, David V, Verdier M, Jauberteau MO, Mathonnet M, Perraud A (2019) Neurotrophins and their involvement in digestive cancers. Cell Death Dis 10(2):123. https://doi.org/10.1038/s41419-019-1385-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX (2020) Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/AKT/GSK-3β pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev 2020:4754195. https://doi.org/10.1155/2020/4754195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aravamudan B, Thompson M, Pabelick C, Prakash YS (2012) Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J Cell Mol Med 16(4):812–823. https://doi.org/10.1111/j.1582-4934.2011.01356.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen T, Ma Z, Zhu L, Jiang W, Wei T, Zhou R, Luo F, Zhang K et al (2016) Suppressing receptor-interacting protein 140: a new sight for salidroside to treat cerebral ischemia. Mol Neurobiol 53(9):6240–6250. https://doi.org/10.1007/s12035-015-9521-7

    Article  CAS  PubMed  Google Scholar 

  30. Tao W, Wang H, Su Q, Chen Y, Xue W, Xia B, Duan J, Chen G (2016) Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice. Psychiatry Res 238:116–121. https://doi.org/10.1016/j.psychres.2016.02.033

    Article  CAS  PubMed  Google Scholar 

  31. Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V (2022) The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 48(4):e12799. https://doi.org/10.1111/nan.12799

  32. Felipo V, Miñana MD, Grisolía S (1988) Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem 176(3):567–571

    Article  CAS  PubMed  Google Scholar 

  33. Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V (2018) Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 15:36

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto S, Yako Y, Fujioka Y, Kajita M, Kameyama T, Kon S et al (2016) A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC). Mol Biol Cell 27:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwiatkowski K, Piotrowska A, Rojewska E, Makuch W, Mika J (2017) The RS504393 Influences the level of nociceptive factors and enhances opioid analgesic potency in neuropathic rats. J Neuroimmune Pharmacol 12:402–419

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montalbano A, Baj G, Papadia D, Tongiorgi E, Sciancalepore M (2013) Blockade of BDNF signaling turns chemically-induced long-term potentiation into long-term depression. Hippocampus 23:879–889

    Article  CAS  PubMed  Google Scholar 

  38. King MD, Alleyne CH Jr, Dhandapani KM (2013) TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett 542:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Felipo V, Grau E, Miñana MD, Grisolía S (1993) Ammonium injection induces an N-methyl-D-aspartate receptor-mediated proteolysis of the microtubule-associated protein MAP-2. J Neurochem 60:1626–1630

    Article  CAS  PubMed  Google Scholar 

  40. Cabrera-Pastor A, Taoro-Gonzalez L, Felipo V (2016) Hyperammonemia alters glycinergic neurotransmission and modulation of the glutamate-nitric oxide-cGMP pathway by extracellular glycine in cerebellum in vivo. J Neurochem 137(4):539–548

    Article  CAS  PubMed  Google Scholar 

  41. Kaindl AM, Degos V, Peineau S et al (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549

    Article  CAS  PubMed  Google Scholar 

  42. Raghunatha P, Vosoughi A, Kauppinen TM, Jackson MF (2020) Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia 68(7):1421–1434

    Article  PubMed  Google Scholar 

  43. Liu T, Clark RK, McDonnell PC et al (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25(7):1481–1488

    Article  CAS  PubMed  Google Scholar 

  44. Zhang XW, Wu Y, Wang DK, Jin X, Li CH (2019) Expression changes of inflammatory cytokines TNFα, IL-1β and HO-1 in hematoma surrounding brain areas after intracerebral hemorrhage. J Biol Regul Homeost Agents 33(5):1359–1367

    CAS  PubMed  Google Scholar 

  45. Ohtori S, Takahashi K, Moriya H, Myers RR (2004) TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976) 29(10):1082–1088

    Article  PubMed  Google Scholar 

  46. Schäfers M, Geis C, Svensson CI, Luo ZD, Sommer C (2003) Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur J Neurosci 17(4):791–804

    Article  PubMed  Google Scholar 

  47. Shim HG, Jang SS, Kim SH et al (2018) TNFα increases the intrinsic excitability of cerebellar Purkinje cells through elevating glutamate release in Bergmann Glia. Sci Rep 8(1):11589

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bliss RM, Finckbone VL, Trice J, Strahlendorf H, Strahlendorf J (2011) Tumor necrosis factor-α (TNFα) augments AMPA-induced Purkinje neuron toxicity. Brain Res 1386:1–14

    Article  CAS  PubMed  Google Scholar 

  49. Takeuchi H, Jin S, Wang J et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    Article  CAS  PubMed  Google Scholar 

  50. Chen CJ, Ou YC, Chang CY et al (2012) Glutamate released by Japanese encephalitis virus-infected microglia involves TNFα signaling and contributes to neuronal death. Glia 60(3):487–501

    Article  PubMed  Google Scholar 

  51. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S (2008) Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ye L, Huang Y, Zhao L et al (2013) IL-1β and TNFα induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125(6):897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lou MM, Tang XQ, Wang GM et al (2021) Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interActing with HMGB1 in neurons. Nat Commun 12(1):4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mandke P, Vasquez KM (2019) Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst) 83:102701

    Article  CAS  PubMed  Google Scholar 

  55. Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF (2020) HMGB1-mediated neuroinflammatory responses in brain injuries: potential mechanisms and therapeutic opportunitieS. Int J Mol Sci 21(13):4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaikwad S, Puangmalai N, Bittar A et al (2021) Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep 36(3):109419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu DD, Luo P, Gu L et al (2021) Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion. J Neuroinflammation 18(1):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Watanabe M, Miyajima M, Ogino I, Nakajima M, Arai H (2013) Cerebellar Purkinje cells exhibit increased expression of HMGB-1 and apoptosis in congenital hydrocephalic H-Tx rats. Neurosurgery 72(3):459–467

    Article  PubMed  Google Scholar 

  59. Ito H, Fujita K, Tagawa K et al (2015) HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med 7(1):78–101

    Article  CAS  PubMed  Google Scholar 

  60. Balzano T, Forteza J, Borreda I et al (2018) Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol 77(9):837–845

    Article  CAS  PubMed  Google Scholar 

  61. Corral-Juan M, Serrano-Munuera C, Rábano A et al (2018) Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 141(7):1981–1997

    Article  PubMed  Google Scholar 

  62. Zhong Z, Chen W, Gao H et al (2021) Fecal microbiota transplantation exerts a protective role in MPTP-induced Parkinson’s disease via the TLR4/PI3K/AKT/NF-κB Pathway Stimulated by α-Synuclein. Neurochem Res 46(11):3050–3058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 8 was created with BioRender.com

Funding

This work was supported in part by the Ministerio de Ciencia e Innovación Spain (PID2020-113388RB-I00), Consellería Educación Generalitat Valenciana (PROMETEOII/2018/051), and CIPROM/2021/082 and co-funded with European Regional Development Funds (ERDF). YMA has a contract from Ministerio de Ciencia, Innovación y Universidades (PRE2018-084770).

Author information

Authors and Affiliations

Authors

Contributions

YMA and VF designed the research; YMA performed the research and analyzed the data; YMA and VF wrote the paper; VF obtained the funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vicente Felipo.

Ethics declarations

Ethics Approval

The experiments were approved by the Comite Ético de Experimentación Animal (CEEA) of our center (2019–12) and by the Conselleria de Agricultura of Generalitat Va-lenciana (2019/VSC/PEA/0224), were performed in accordance with the guidelines of the Di-rective of the European Commission (2010/63/EU) for care and management of experimental animals, and comply with the ARRIVE guidelines for animal research. Approval Date: 13–11-2019.

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas, Y.M., Felipo, V. Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy. Mol Neurobiol 60, 3071–3085 (2023). https://doi.org/10.1007/s12035-023-03264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03264-4

Keywords

Navigation