Skip to main content
Log in

Doublecortin-Expressing Neurons in Human Cerebral Cortex Layer II and Amygdala from Infancy to 100 Years Old

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A cohort of morphologically heterogenous doublecortin immunoreactive (DCX +) “immature neurons” has been identified in the cerebral cortex largely around layer II and the amygdala largely in the paralaminar nucleus (PLN) among various mammals. To gain a wide spatiotemporal view on these neurons in humans, we examined layer II and amygdalar DCX + neurons in the brains of infants to 100-year-old individuals. Layer II DCX + neurons occurred throughout the cerebrum in the infants/toddlers, mainly in the temporal lobe in the adolescents and adults, and only in the temporal cortex surrounding the amygdala in the elderly. Amygdalar DCX + neurons occurred in all age groups, localized primarily to the PLN, and reduced in number with age. The small-sized DCX + neurons were unipolar or bipolar, and formed migratory chains extending tangentially, obliquely, and inwardly in layers I–III in the cortex, and from the PLN to other nuclei in the amygdala. Morphologically mature-looking neurons had a relatively larger soma and weaker DCX reactivity. In contrast to the above, DCX + neurons in the hippocampal dentate gyrus were only detected in the infant cases in parallelly processed cerebral sections. The present study reveals a broader regional distribution of the cortical layer II DCX + neurons than previously documented in human cerebrum, especially during childhood and adolescence, while both layer II and amygdalar DCX + neurons persist in the temporal lobe lifelong. Layer II and amygdalar DCX + neurons may serve as an essential immature neuronal system to support functional network plasticity in human cerebrum in an age/region-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the supplemental data. Upon reasonable request, additional experimental data and materials for this study can be requested at the discretion of the corresponding author.

References 

  1. Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98(1):1–15

    Article  PubMed  Google Scholar 

  2. La Rosa C, Parolisi R, Bonfanti L (2020) Brain structural plasticity: from adult neurogenesis to immature neurons. Front Neurosci 14:75

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim JY, Paredes MF (2021) Implications of extended inhibitory neuron development. Int J Mol Sci 22(10):5113

  4. Bonfanti L, Seki T (2021) The PSA-NCAM-positive “immature” neurons: an old discovery providing new vistas on brain structural plasticity. Cells 10(10):2542

  5. Seki T, Arai Y (1991) Expression of highly polysialylated NCAM in the neocortex and piriform cortex of the developing and the adult rat. Anat Embryol (Berl) 184(4):395–401

    Article  CAS  PubMed  Google Scholar 

  6. Bonfanti L, Olive S, Poulain DA, Theodosis DT (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49(2):419–436

    Article  CAS  PubMed  Google Scholar 

  7. Bernier PJ, Parent A (1998) Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 18(7):2486–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fox GB, Fichera G, Barry T, O’Connell AW, Gallagher HC, Murphy KJ, Regan CM (2000) Consolidation of passive avoidance learning is associated with transient increases of polysialylated neurons in layer II of the rat medial temporal cortex. J Neurobiol 45(3):135–141

    Article  CAS  PubMed  Google Scholar 

  9. Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14(4):629–644

    Article  CAS  PubMed  Google Scholar 

  10. Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A 99(17):11464–11469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fudge JL (2004) Bcl-2 immunoreactive neurons are differentially distributed in subregions of the amygdala and hippocampus of the adult macaque. Neuroscience 127(2):539–556

    Article  CAS  PubMed  Google Scholar 

  12. Fudge JL, deCampo DM, Becoats KT (2012) Revisiting the hippocampal-amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 212:104–119

    Article  CAS  PubMed  Google Scholar 

  13. Xiong K, Luo DW, Patrylo PR, Luo XG, Struble RG, Clough RW, Yan XX (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol 211(1):271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai Y, Xiong K, Chu Y, Luo DW, Luo XG, Yuan XY, Struble RG, Clough RW et al (2009) Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol 216(2):342–356

    Article  CAS  PubMed  Google Scholar 

  15. Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19(5):1028–1041

    Article  PubMed  Google Scholar 

  16. Zhang XM, Cai Y, Chu Y, Chen EY, Feng JC, Luo XG, Xiong K, Struble RG et al (2009) Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marlatt MW, Philippens I, Manders E, Czéh B, Joels M, Krugers H, Lucassen PJ (2011) Distinct structural plasticity in the hippocampus and amygdala of the middle-aged common marmoset (Callithrix jacchus). Exp Neurol 230(2):291–301

    Article  PubMed  Google Scholar 

  18. De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M (2013) Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem 57(1):e9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez JM, Nacher J (2013) Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci 37(1):10–22

    Article  PubMed  Google Scholar 

  20. Patzke N, LeRoy A, Ngubane NW, Bennett NC, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E et al (2014) The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol 84(3):227–241

    Article  PubMed  Google Scholar 

  21. Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, Connor B, Dragunow M et al (2008) Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci 28(11):2254–2265

    Article  CAS  PubMed  Google Scholar 

  22. Piumatti M, Palazzo O, La Rosa C, Crociara P, Parolisi R, Luzzati F, Lévy F, Bonfanti L (2018) Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex. J Neurosci 38(4):826–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, Chang EF, Insausti R et al (2019) Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun 10(1):2748

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ai JQ, Luo R, Tu T, Yang C, Jiang J, Zhang B, Bi R, Tu E et al (2021) Doublecortin-expressing neurons in Chinese tree shrew forebrain exhibit mixed rodent and primate-like topographic characteristics. Front Neuroanat 15:727883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Groen T, Kadish I, Popović N, Caballero Bleda M, Baño-Otalora B, Rol MA, Madrid JA, Popović M (2021) Widespread doublecortin expression in the cerebral cortex of the Octodon degus. Front Neuroanat 15:656882

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chawana R, Patzke N, Alagaili AN, Bennett NC, Mohammed OB, Kaswera-Kyamakya C, Gilissen E, Ihunwo AO et al (2016) The distribution of Ki-67 and doublecortin immunopositive cells in the brains of three Microchiropteran species, Hipposideros fuliginosus, Triaenops persicus, and Asellia tridens. Anat Rec (Hoboken) 299(11):1548–1560

    Article  CAS  PubMed  Google Scholar 

  27. Fasemore TM, Patzke N, Kaswera-Kyamakya C, Gilissen E, Manger PR, Ihunwo AO (2018) The distribution of Ki-67 and doublecortin-immunopositive cells in the brains of three Strepsirrhine Primates: Galago demidoff, Perodicticus potto, and Lemur catta. Neuroscience 372:46–57

    Article  CAS  PubMed  Google Scholar 

  28. La Rosa C, Cavallo F, Pecora A, Chincarini M, Ala U, Faulkes CG, Nacher J, Cozzi B, et al. (2020) Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. Elife 9

  29. Rotheneichner P, Belles M, Benedetti B, König R, Dannehl D, Kreutzer C, Zaunmair P, Engelhardt M et al (2018) Cellular plasticity in the adult murine piriform cortex: continuous maturation of dormant precursors into excitatory neurons. Cereb Cortex 28(7):2610–2621

    Article  PubMed  PubMed Central  Google Scholar 

  30. Benedetti B, Dannehl D, König R, Coviello S, Kreutzer C, Zaunmair P, Jakubecova D, Weiger TM et al (2020) functional integration of neuronal precursors in the adult murine piriform cortex. Cereb Cortex 30(3):1499–1515

    Article  PubMed  Google Scholar 

  31. Xiong K, Cai Y, Zhang XM, Huang JF, Liu ZY, Fu GM, Feng JC, Clough RW et al (2010) Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci 45(2):180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He X, Zhang XM, Wu J, Fu J, Mou L, Lu DH, Cai Y, Luo XG et al (2014) Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience 259:101–112

    Article  CAS  PubMed  Google Scholar 

  33. Rossi SL, Mahairaki V, Zhou L, Song Y, Koliatsos VE (2014) Remodeling of the piriform cortex after lesion in adult rodents. NeuroReport 25(13):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  34. Srikandarajah N, Martinian L, Sisodiya SM, Squier W, Blumcke I, Aronica E, Thom M (2009) Doublecortin expression in focal cortical dysplasia in epilepsy. Epilepsia 50(12):2619–2628

    Article  PubMed  Google Scholar 

  35. Sakurai M, Suzuki H, Tomita N, Sunden Y, Shimada A, Miyata H, Morita T (2018) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology 38(2):135–143

    Article  CAS  PubMed  Google Scholar 

  36. Nordahl CW, Scholz R, Yang X, Buonocore MH, Simon T, Rogers S, Amaral DG (2012) Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study. Arch Gen Psychiatry 69(1):53–61

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maheu ME, Davoli MA, Turecki G, Mechawar N (2013) Amygdalar expression of proteins associated with neuroplasticity in major depression and suicide. J Psychiatr Res 47(3):384–390

    Article  PubMed  Google Scholar 

  38. Avino TA, Barger N, Vargas MV, Carlson EL, Amaral DG, Bauman MD, Schumann CM (2018) Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proc Natl Acad Sci U S A 115(14):3710–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schumann CM, Scott JA, Lee A, Bauman MD, Amaral DG (2019) Amygdala growth from youth to adulthood in the macaque monkey. J Comp Neurol 527(18):3034–3045

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mikkonen M, Soininen H, Kälviänen R, Tapiola T, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998) Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol 44(6):923–934

    Article  CAS  PubMed  Google Scholar 

  41. Chareyron LJ, Amaral DG, Lavenex P (2016) Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala. Proc Natl Acad Sci U S A 113(50):14420–14425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yachnis AT, Roper SN, Love A, Fancey JT, Muir D (2000) Bcl-2 immunoreactive cells with immature neuronal phenotype exist in the nonepileptic adult human brain. J Neuropathol Exp Neurol 59(2):113–119

    Article  CAS  PubMed  Google Scholar 

  43. Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, Xu C, Li Q et al (2022) Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110(3):452-469.e414

    Article  CAS  PubMed  Google Scholar 

  44. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco-Ibañez JM, Crespo C, Gutierrez A, Nacher J (2022) Phenotype and distribution of immature neurons in the human cerebral cortex layer II. Front Neuroanat 16:851432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH et al (2016) Extensive migration of young neurons into the infant human frontal lobe. Science 354(6308):aaf7073

  47. Nascimento MA, Biagiotti S, Herranz-Pérez V, Bueno R, Ye JY, Abel T, Rubio-Moll JS, Garcia-Verdugo JM et al (2022) Persistent postnatal migration of interneurons into the human entorhinal cortex. bioRxiv. https://doi.org/10.1101/2022.03.19.484996

  48. Yan XX, Ma C, Bao AM, Wang XM, Gai WP (2015) Brain banking as a cornerstone of neuroscience in China. Lancet Neurol 14(2):136

    Article  PubMed  Google Scholar 

  49. Ma C, Bao AM, Yan XX, Swaab DF (2019) Progress in human brain banking in China. Neurosci Bull 35(2):179–182

    Article  PubMed  PubMed Central  Google Scholar 

  50. Qiu W, Zhang H, Bao A, Zhu K, Huang Y, Yan X, Zhang J, Zhong C et al (2019) Standardized Operational Protocol for Human Brain Banking in China. Neurosci Bull 35(2):270–276

    Article  CAS  PubMed  Google Scholar 

  51. Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y et al (2017) Sortilin fragments deposit at senile plaques in human cerebrum. Front Neuroanat 11:45

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tu T, Jiang J, Zhang QL, Wan L, Li YN, Pan A, Manavis J, Yan XX (2020) extracellular sortilin proteopathy relative to β-amyloid and tau in aged and Alzheimer’s disease human brains. Front Aging Neurosci 12:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS et al (2022) Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 14:926904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560

    Article  PubMed  Google Scholar 

  56. Flor-García M, Terreros-Roncal J, Moreno-Jiménez EP, Ávila J, Rábano A, Llorens-Martín M (2020) Unraveling human adult hippocampal neurogenesis. Nat Protoc 15(2):668–693

    Article  PubMed  Google Scholar 

  57. Terreros-Roncal J, Moreno-Jiménez EP, Flor-García M, Rodríguez-Moreno CB, Trinchero MF, Cafini F, Rábano A, Llorens-Martín M (2021) Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science 374(6571):1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arellano JI, Duque A, Rakic P (2022) Comment on “Impact of neurodegenerative diseases on human adult hippocampal neurogenesis.” Science 376(6590):eabn7083

    Article  PubMed  Google Scholar 

  59. Alvarez-Buylla A, Cebrian-Silla A, Sorrells SF, Nascimento MA, Paredes MF, Garcia-Verdugo JM, Yang Z, Huang EJ (2022) Comment on “Impact of neurodegenerative diseases on human adult hippocampal neurogenesis.” Science 376(6590):eabn8861

    Article  PubMed  Google Scholar 

  60. Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, Page CE, Sandoval K et al (2021) Positive controls in adults and children support that very few, if any, new neurons are born in the adult human hippocampus. J Neurosci 41(12):2554–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gómez-Climent MA, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18(10):2229–2240

    Article  PubMed  Google Scholar 

  62. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10

    Article  CAS  PubMed  Google Scholar 

  63. Llorca A, Deogracias R (2022) Origin, development, and synaptogenesis of cortical interneurons. Front Neurosci 16:929469

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ellis JK, Sorrells SF, Mikhailova S, Chavali M, Chang S, Sabeur K, McQuillen P, Rowitch DH (2019) Ferret brain possesses young interneuron collections equivalent to human postnatal migratory streams. J Comp Neurol 527(17):2843–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Porter DDL, Henry SN, Ahmed S, Rizzo AL, Makhlouf R, Gregg C, Morton PD (2022) Neuroblast migration along cellular substrates in the developing porcine brain. Stem Cell Reports 17(9):2097–2110

    Article  PubMed  PubMed Central  Google Scholar 

  66. Page CE, Biagiotti SW, Alderman PJ, Sorrells SF (2022) Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 56:101133

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ajram LA, Horder J, Mendez MA, Galanopoulos A, Brennan LP, Wichers RH, Robertson DM, Murphy CM et al (2017) Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 7(5):e1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mosili P, Maikoo S, Mabandla MV, Qulu L (2020) The pathogenesis of fever-induced febrile seizures and its current state. Neurosci Insights 15:2633105520956973

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dóra F, Renner É, Keller D, Palkovits M, Dobolyi Á (2022) Transcriptome profiling of the dorsomedial prefrontal cortex in suicide victims. Int J Mol Sci 23(13):7067

  70. Howes OD, Shatalina E (2022) Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol Psychiatry 92(6):501–513

    Article  PubMed  Google Scholar 

  71. Lado WE, Xu X, Hablitz JJ (2022) Modulation of epileptiform activity by three subgroups of GABAergic interneurons in mouse somatosensory cortex. Epilepsy Res 183:106937

    Article  CAS  PubMed  Google Scholar 

  72. Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD, Griffiths JD, Tripathy SJ, Valiante TA et al (2022) Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. Cell Rep 38(2):110232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our greatest gratitude and respect to the individuals who donate their brains to help understand human brain health and diseases.

Funding

This study was supported by National Natural Science Foundation of China (#82071223), Ministry of Science and Technology of China (STI2030-Major Projects#2021ZD0201103 and #2021ZD0201803), and Hunan Provincial Science and Technology Foundation (#2018JJ2552 and #2022JJ40817).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Lily Wan, Aihua Pan, and Xiao-Xin Yan. Data curation, Ya-Nan Li and Dan-Dan Hu. Funding acquisition, Lily-Wan, Ewen Tu, Xiao-Sheng Wang, Hui Wang, Xiao-Ping Wang, and Xiao-Xin Yan. Methodology, Ya-Nan Li, Dan-Dan Hu, Xiao-Lu Cai, Yan Wang, Chen Yang, Juan Jiang, Qi-Lei Zhang, Tian Tu. Writing—original draft, Lily Wan. Writing—review and editing, Aihua Pan and Xiao-Xin Yan.

Corresponding authors

Correspondence to Aihua Pan or Lily Wan.

Ethics declarations

Ethics Approval and Consent to Participate

The use of postmodern human brains was approved by the Ethics Committee for Research and Education at Xiangya School of Medicine, in compliance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed consent for body/brain donation was obtained by the willed body donation center of Xiangya School of Medicine.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 394 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YN., Hu, DD., Cai, XL. et al. Doublecortin-Expressing Neurons in Human Cerebral Cortex Layer II and Amygdala from Infancy to 100 Years Old. Mol Neurobiol 60, 3464–3485 (2023). https://doi.org/10.1007/s12035-023-03261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03261-7

Keywords

Navigation