Skip to main content
Log in

Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 23 November 2022

This article has been updated

Abstract

Hyperglycemia is a risk factor for poor prognosis after acute ischemic stroke and promote the occurrence of hemorrhagic transformation (HT). The activation of P2RX7 play an important role in endotheliocyte damage and BBB disruption. Ferroptosis is a novel pattern of programmed cell death caused by the accumulation of intracellular iron and lipid peroxidation, resulting in ROS production and cell death. This study is to explore the mechanism of P2RX7 in reducing HT pathogenesis after acute ischemic stroke through regulating endotheliocyte ferroptosis. Male SD rats were performed to establish middle cerebral artery occlusion (MCAO) model injected with 50% high glucose (HG) and HUVECs were subjected to OGD/R treated with high glucose (30 mM) for establishing HT model in vivo and in vitro. P2RX7 inhibitor (BBG), and P2RX7 small interfering RNAs (siRNA) were used to investigate the role of P2RX7 in BBB after MCAO in vivo and OGD/R in vitro, respectively. The neurological deficits, infarct volume, degree of intracranial hemorrhage, integrity of the BBB, immunoblotting, and immunofluorescence were evaluated at 24 h after MCAO. Our study found that the level of P2RX7 was gradually increased after MCAO and/or treated with HG. Our results showed that treatment with HG after MCAO can aggravate neurological deficits, infarct volume, oxidative stress, iron accumulation, and BBB injury in HT model, and HG-induced HUVECs damage. The inhibition of P2RX7 reversed the damage effect of HG, significantly downregulated the expression level of P53, HO-1, and p-ERK1/2 and upregulated the level of SLC7A11 and GPX4, which implicated that P2RX7 inhibition could attenuate oxidative stress and ferroptosis of endothelium in vivo and in vitro. Our data provided evidence that the P2RX7 play an important role in HG-associated oxidative stress, endothelial damage, and BBB disruption, which regulates HG-induced HT by ERK1/2 and P53 signaling pathways after MCAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional files. All material used in this manuscript will be made available to researchers subject to confidentiality.

Change history

References

  1. Couret D, Bourane S, Catan A, Nativel B, Planesse C, Dorsemans AC, Ait-Arsa I, Cournot M et al (2018) A hemorrhagic transformation model of mechanical stroke therapy with acute hyperglycemia in mice. J Comp Neurol 526(6):1006–1016. https://doi.org/10.1002/cne.24386

    Article  CAS  Google Scholar 

  2. Shao A, Gao S, Wu H, Xu W, Pan Y, Fang Y, Wang X, Zhang J (2021) Melatonin Ameliorates hemorrhagic transformation via suppression of ROS-induced NLRP3 activation after cerebral ischemia in hyperglycemic rats. Oxid Med Cell Longev 2021:6659282. https://doi.org/10.1155/2021/6659282

    Article  CAS  Google Scholar 

  3. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J (2019) Ferroptosis and its role in diverse brain diseases. Mol Neurobiol 56(7):4880–4893. https://doi.org/10.1007/s12035-018-1403-3

    Article  CAS  Google Scholar 

  4. Su L, Jiang X, Yang C, Zhang J, Chen B, Li Y, Yao S, Xie Q et al (2019) Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. J Biol Chem 294(50):19395–19404. https://doi.org/10.1074/jbc.RA119.010949

    Article  CAS  Google Scholar 

  5. Cheng Y, Song Y, Chen H, Li Q, Gao Y, Lu G, Luo C (2021) Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders. Oxid Med Cell Longev 2021:5005136. https://doi.org/10.1155/2021/5005136

    Article  CAS  Google Scholar 

  6. Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y, Wu Z, Cui D et al (2019) Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull 153:122–132. https://doi.org/10.1016/j.brainresbull.2019.08.013

    Article  CAS  Google Scholar 

  7. Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N, Bopassa JC (2019) Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun 520(3):606–611. https://doi.org/10.1016/j.bbrc.2019.10.006

    Article  CAS  Google Scholar 

  8. Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J, Yang M (2020) Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev 2020:9067610. https://doi.org/10.1155/2020/9067610

    Article  CAS  Google Scholar 

  9. He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P (2022) Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 60:101470. https://doi.org/10.1016/j.molmet.2022.101470

    Article  CAS  Google Scholar 

  10. Sperlágh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35(10):537–547. https://doi.org/10.1016/j.tips.2014.08.002

    Article  CAS  Google Scholar 

  11. Zhao H, Zhang X, Dai Z, Feng Y, Li Q, Zhang JH, Liu X, Chen Y et al (2016) P2X7 receptor suppression preserves blood-brain barrier through inhibiting RhoA activation after experimental intracerebral hemorrhage in rats. Sci Rep 6:23286. https://doi.org/10.1038/srep23286

    Article  CAS  Google Scholar 

  12. Huang C, Chi XS, Li R, Hu X, Xu HX, Li JM, Zhou D (2017) Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci 63(2):173–184. https://doi.org/10.1007/s12031-017-0968-z

    Article  CAS  Google Scholar 

  13. Wen Z, Mei B, Li H, Dou Y, Tian X, Shen M, Chen G (2017) P2X7 Participates in Intracerebral hemorrhage-induced secondary brain injury in rats via MAPKs signaling pathways. Neurochem Res 42(8):2372–2383. https://doi.org/10.1007/s11064-017-2257-1

    Article  CAS  Google Scholar 

  14. Furuta T, Mukai A, Ohishi A, Nishida K, Nagasawa K (2017) Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity. Metallomics 9(12):1839–1851. https://doi.org/10.1039/c7mt00257b

    Article  CAS  Google Scholar 

  15. Leng B, Li C, Sun Y, Zhao K, Zhang L, Lu ML, Wang HX (2020) Protective effect of astragaloside IV on high glucose-induced endothelial dysfunction via inhibition of P2X7R dependent P38 MAPK signaling pathway. Oxid Med Cell Longev 2020:5070415. https://doi.org/10.1155/2020/5070415

    Article  CAS  Google Scholar 

  16. Deng H, Zhang Y, Li GG, Yu HH, Bai S, Guo GY, Guo WL, Ma Y et al (2021) P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage. Neural Regen Res 16(8):1582–1591. https://doi.org/10.4103/1673-5374.303036

    Article  CAS  Google Scholar 

  17. Rawish E, Langer HF (2022) Platelets and the role of P2X receptors in nociception, pain, neuronal toxicity and thromboinflammation. Int J Mol Sci 23(12). https://doi.org/10.3390/ijms23126585

  18. Hirayama Y, Anzai N, Koizumi S (2021) Mechanisms underlying sensitization of P2X7 receptors in astrocytes for induction of ischemic tolerance. Glia 69(9):2100–2110. https://doi.org/10.1002/glia.23998

    Article  CAS  Google Scholar 

  19. Mekala N, Gheewala N, Rom S, Sriram U, Persidsky Y (2022) Blocking of P2X7r reduces mitochondrial stress induced by alcohol and electronic cigarette exposure in brain microvascular endothelial cells. Antioxidants (Basel) 11(7). https://doi.org/10.3390/antiox11071328

  20. Wang W, Li M, Wang Y, Li Q, Deng G, Wan J, Yang Q, Chen Q et al (2016) GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats. Mol Neurobiol 53(10):7028–7036. https://doi.org/10.1007/s12035-015-9607-2

    Article  CAS  Google Scholar 

  21. Liu C, Sun S, Xie J, Li H, Li T, Wu Q, Zhang Y, Bai X et al (2022) GLP-1R Agonist exendin-4 protects against hemorrhagic transformation induced by rtPA after ischemic stroke via the Wnt/β-catenin signaling pathway. Mol Neurobiol. https://doi.org/10.1007/s12035-022-02811-9

    Article  Google Scholar 

  22. Yasmin A, Pitkänen A, Andrade P, Paananen T, Gröhn O, Immonen R (2021) Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy-6-month MRI follow-up after experimental traumatic brain injury. Brain Struct Funct. https://doi.org/10.1007/s00429-021-02395-5

    Article  Google Scholar 

  23. Prasad S, Sajja RK, Park JH, Naik P, Kaisar MA, Cucullo L (2015) Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS 12:18. https://doi.org/10.1186/s12987-015-0014-x

    Article  CAS  Google Scholar 

  24. Malik S, Saha R, Seth P (2014) Involvement of extracellular signal-regulated kinase (ERK1/2)-p53-p21 axis in mediating neural stem/progenitor cell cycle arrest in co-morbid HIV-drug abuse exposure. J Neuroimmune Pharmacol 9(3):340–353. https://doi.org/10.1007/s11481-014-9523-7

    Article  Google Scholar 

  25. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10(11):822. https://doi.org/10.1038/s41419-019-2064-5

    Article  CAS  Google Scholar 

  26. Saralkar P, Arsiwala T, Geldenhuys WJ (2020) Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury. Int J Pharm 578:119090. https://doi.org/10.1016/j.ijpharm.2020.119090

    Article  CAS  Google Scholar 

  27. Tang YC, Tian HX, Yi T, Chen HB (2016) The critical roles of mitophagy in cerebral ischemia. Protein Cell 7(10):699–713. https://doi.org/10.1007/s13238-016-0307-0

    Article  CAS  Google Scholar 

  28. Ding H, Yan CZ, Shi H, Zhao YS, Chang SY, Yu P, Wu WS, Zhao CY et al (2011) Hepcidin is involved in iron regulation in the ischemic brain. PLoS ONE 6(9):e25324. https://doi.org/10.1371/journal.pone.0025324

    Article  CAS  Google Scholar 

  29. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  CAS  Google Scholar 

  30. Chen W, Jiang L, Hu Y, Tang N, Liang N, Li XF, Chen YW, Qin H et al (2021) Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis. Brain Res 1752:147216. https://doi.org/10.1016/j.brainres.2020.147216

    Article  CAS  Google Scholar 

  31. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J et al (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):e90777. https://doi.org/10.1172/jci.insight.90777

    Article  Google Scholar 

  32. Li Q, Weiland A, Chen X, Lan X, Han X, Durham F, Liu X, Wan J et al (2018) Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol 9:581. https://doi.org/10.3389/fneur.2018.00581

    Article  Google Scholar 

  33. Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V et al (2021) Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis. Transl Stroke Res 12(4):615–630. https://doi.org/10.1007/s12975-020-00844-7

    Article  CAS  Google Scholar 

  34. Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y et al (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol 289:115021. https://doi.org/10.1016/j.jep.2022.115021

    Article  CAS  Google Scholar 

  35. Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL (2022) Transplantation of human umbilical cord mesenchymal stem cells-derived neural stem cells pretreated with neuregulin1β ameliorate cerebral ischemic reperfusion injury in rats. Biomolecules 12(3). https://doi.org/10.3390/biom12030428

  36. Kunte H, Busch MA, Trostdorf K, Vollnberg B, Harms L, Mehta RI, Castellani RJ, Mandava P et al (2012) Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann Neurol 72(5):799–806. https://doi.org/10.1002/ana.23680

    Article  CAS  Google Scholar 

  37. Kuang F, Liu J, Tang D, Kang R (2020) Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol 8:586578. https://doi.org/10.3389/fcell.2020.586578

    Article  Google Scholar 

  38. Luo EF, Li HX, Qin YH, Qiao Y, Yan GL, Yao YY, Li LQ, Hou JT et al (2021) Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes 12(2):124–137. https://doi.org/10.4239/wjd.v12.i2.124

    Article  Google Scholar 

  39. Zhang J, Qiu Q, Wang H, Chen C, Luo D (2021) TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res 407(2):112800. https://doi.org/10.1016/j.yexcr.2021.112800

    Article  CAS  Google Scholar 

  40. Chen F, Wang W, Ding H, Yang Q, Dong Q, Cui M (2016) The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia. J Neuroinflammation 13(1):204. https://doi.org/10.1186/s12974-016-0661-0

    Article  CAS  Google Scholar 

  41. Kuroki T, Tanaka R, Shimada Y, Yamashiro K, Ueno Y, Shimura H, Urabe T, Hattori N (2016) Exendin-4 inhibits matrix metalloproteinase-9 activation and reduces infarct growth after focal cerebral ischemia in hyperglycemic mice. Stroke 47(5):1328–1335. https://doi.org/10.1161/STROKEAHA.116.012934

    Article  CAS  Google Scholar 

  42. Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45(3):954–961. https://doi.org/10.1016/j.nbd.2011.12.014

    Article  CAS  Google Scholar 

  43. Seeland S, Kettiger H, Murphy M, Treiber A, Giller J, Kiss A, Sube R, Krähenbühl S et al (2015) ATP-induced cellular stress and mitochondrial toxicity in cells expressing purinergic P2X7 receptor. Pharmacol Res Perspect 3(2):e00123. https://doi.org/10.1002/prp2.123

    Article  Google Scholar 

  44. Ferrazoli EG, de Souza HD, Nascimento IC, Oliveira-Giacomelli Á, Schwindt TT, Britto LR, Ulrich H (2017) Brilliant Blue G, but not fenofibrate, treatment reverts hemiparkinsonian behavior and restores dopamine levels in an animal model of Parkinson’s disease. Cell Transplant 26(4):669–677. https://doi.org/10.3727/096368917X695227

    Article  Google Scholar 

  45. Cieślak M, Wojtczak A (2018) Role of purinergic receptors in the Alzheimer’s disease. Purinergic Signal 14(4):331–344. https://doi.org/10.1007/s11302-018-9629-0

    Article  CAS  Google Scholar 

  46. Wu XM, Zhang N, Li JS, Yang ZH, Huang XL, Yang XF (2022) Purinergic receptors mediate endothelial dysfunction and participate in atherosclerosis. Purinergic Signal. https://doi.org/10.1007/s11302-021-09839-x

    Article  Google Scholar 

  47. Sathanoori R, Swärd K, Olde B, Erlinge D (2015) The ATP Receptors P2X7 and P2X4 modulate high glucose and palmitate-induced inflammatory responses in endothelial cells. PLoS ONE 10(5):e0125111. https://doi.org/10.1371/journal.pone.0125111

    Article  CAS  Google Scholar 

  48. Zhang QL, Wang W, Alatantuya D, Lu ZJ, Li LL, Zhang TZ (2018) Down-regulated miR-187 promotes oxidative stress-induced retinal cell apoptosis through P2X7 receptor. Int J Biol Macromol 120(Pt A):801–810. https://doi.org/10.1016/j.ijbiomac.2018.08.166

    Article  CAS  Google Scholar 

  49. da Silva CS, Calió ML, Mosini AC, Pires JM, Rêgo D, Mello LE, Leslie A (2019) LPS-induced systemic neonatal inflammation: blockage of P2X7R by BBG decreases mortality on rat pups and oxidative stress in hippocampus of adult rats. Front Behav Neurosci 13:240. https://doi.org/10.3389/fnbeh.2019.00240

    Article  CAS  Google Scholar 

  50. Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brüne B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol 275(6):F962-971. https://doi.org/10.1152/ajprenal.1998.275.6.F962

    Article  CAS  Google Scholar 

  51. Mello Pde A, Filippi-Chiela EC, Nascimento J, Beckenkamp A, Santana DB, Kipper F, Casali EA, Nejar Bruno A et al (2014) Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol Biol Cell 25(19):2905–2918. https://doi.org/10.1091/mbc.E14-01-0042

    Article  CAS  Google Scholar 

  52. Zhang Y, Yuan F, Cao X, Zhai Z, Du GangHuang, X, Wang Y, Zhang J, Huang Y et al (2014) P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3. Toxicol Appl Pharmacol 281(1):1–10. https://doi.org/10.1016/j.taap.2014.09.016

    Article  CAS  Google Scholar 

  53. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344

    Article  CAS  Google Scholar 

  54. Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074

    Article  CAS  Google Scholar 

  55. Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y et al (2021) PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol 42:101928. https://doi.org/10.1016/j.redox.2021.101928

    Article  CAS  Google Scholar 

  56. Kuang H, Wang T, Liu L, Tang C, Li T, Liu M, Wang T, Zhong W et al (2021) Treatment of early brain injury after subarachnoid hemorrhage in the rat model by inhibiting p53-induced ferroptosis. Neurosci Lett 762:136134. https://doi.org/10.1016/j.neulet.2021.136134

    Article  CAS  Google Scholar 

  57. Zhu K, Zhu X, Sun S, Yang W, Liu S, Tang Z, Zhang R, Li J et al (2021) Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 345:113828. https://doi.org/10.1016/j.expneurol.2021.113828

    Article  CAS  Google Scholar 

  58. Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284(2):C571-581. https://doi.org/10.1152/ajpcell.00286.2002

    Article  CAS  Google Scholar 

  59. Sun X, Zhou R, Lei Y, Hu J, Li X (2020) The ligand-gated ion channel P2X7 receptor mediates NLRP3/caspase-1-mediated pyroptosis in cerebral cortical neurons of juvenile rats with sepsis. Brain Res 1748:147109. https://doi.org/10.1016/j.brainres.2020.147109

    Article  CAS  Google Scholar 

  60. Lin HY, Tang HY, Davis FB, Davis PJ (2011) Resveratrol and apoptosis. Ann N Y Acad Sci 1215:79–88. https://doi.org/10.1111/j.1749-6632.2010.05846.x

    Article  CAS  Google Scholar 

  61. Lee HJ, Oh SY, Jo I (2021) Zearalenone induces endothelial cell apoptosis through activation of a cytosolic Ca(2+)/ERK1/2/p53/Caspase 3 Signaling Pathway. Toxins (Basel) 13(3). https://doi.org/10.3390/toxins13030187

  62. Feng D, Wang B, Ma Y, Shi W, Tao K, Zeng W, Cai Q, Zhang Z et al (2016) The Ras/Raf/Erk pathway mediates the subarachnoid hemorrhage-induced apoptosis of hippocampal neurons through phosphorylation of p53. Mol Neurobiol 53(8):5737–5748. https://doi.org/10.1007/s12035-015-9490-x

    Article  CAS  Google Scholar 

  63. Li C, Lönn ME, Xu X, Maghzal GJ, Frazer DM, Thomas SR, Halliwell B, Richardson DR et al (2012) Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radic Biol Med 53(2):366–374. https://doi.org/10.1016/j.freeradbiomed.2012.03.007

    Article  CAS  Google Scholar 

  64. Li J, Lu K, Sun F, Tan S, Zhang X, Sheng W, Hao W, Liu M et al (2021) Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med 19(1):96. https://doi.org/10.1186/s12967-021-02745-1

    Article  CAS  Google Scholar 

  65. Li S, Zhou C, Zhu Y, Chao Z, Sheng Z, Zhang Y, Zhao Y (2021) Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol 90:107179. https://doi.org/10.1016/j.intimp.2020.107179

    Article  CAS  Google Scholar 

  66. Lv Z, Wang F, Zhang X, Zhang X, Zhang J, Liu R (2021) Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway. Shock 56(3):440–449. https://doi.org/10.1097/SHK.0000000000001751

    Article  CAS  Google Scholar 

  67. Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC (2018) Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett 416:124–137. https://doi.org/10.1016/j.canlet.2017.12.025

    Article  CAS  Google Scholar 

  68. Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG (2021) Protective role of microglial HO-1 blockade in aging: implication of iron metabolism. Redox Biol 38:101789. https://doi.org/10.1016/j.redox.2020.101789

    Article  CAS  Google Scholar 

  69. Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, Gao H, Sun H et al (2021) HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol 43:101971. https://doi.org/10.1016/j.redox.2021.101971

    Article  CAS  Google Scholar 

  70. Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y, Luo Y, Yu B et al (2021) Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol 46:102131. https://doi.org/10.1016/j.redox.2021.102131

    Article  CAS  Google Scholar 

  71. Feng YD, Ye W, Tian W, Meng JR, Zhang M, Sun Y, Zhang HN, Wang SJ et al (2022) Old targets, new strategy: apigenin-7-O-β-d-(-6″-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2022.03.033

    Article  Google Scholar 

  72. Ozen M, Kitase Y, Vasan V, Burkhardt C, Ramachandra S, Robinson S, Jantzie LL (2021) Chorioamnionitis precipitates perinatal alterations of heme-oxygenase-1 (HO-1) homeostasis in the developing rat brain. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22115773

  73. Zhao J, Zhao X, Tian J, Xue R, Luo B, Lv J, Gao J, Wang M (2020) Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci 241:117160. https://doi.org/10.1016/j.lfs.2019.117160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Wei Wang at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology for the experimental advice.

Funding

This article was supported by grants from the National Natural Science Foundation of China (Nos. 81971870 and No. 82172173).

Author information

Authors and Affiliations

Authors

Contributions

CL-L and QT designed and complete the study, conducted data analysis, and prepared the manuscript. JF-W, PB–H, YJ-G, CY, GJ-W, SM-H, and HW built MCAO models of rats and cultured HUVECs. MC-L reviewed and revised the manuscript.

Corresponding author

Correspondence to Mingchang Li.

Ethics declarations

Ethics Approval and Consent to Participate

All institutional and national guidelines for the care and use of laboratory animals were followed during the experiments. All procedures performed in this study observed the ethical standards of the Renmin Hospital of Wuhan University.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Tian, Q., Wang, J. et al. Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol 60, 460–479 (2023). https://doi.org/10.1007/s12035-022-03092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03092-y

Keywords

Navigation