Skip to main content

Advertisement

Log in

IL-18BP Alleviates Anxiety-Like Behavior Induced by Traumatic Stress via Inhibition of the IL-18R-NLRP3 Signaling Pathway in a Mouse Model of Hemorrhagic Shock and Resuscitation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Psychological distress and posttraumatic stress, including anxiety, severely influence life quality. Previously, we reported that interleukin-18 (IL-18) was involved in pyroptosis-induced emotional changes in a rodent model of hemorrhagic shock and resuscitation (HSR). Here, we aimed to continue our investigation on the role of IL-18 binding protein (IL-18BP), which exhibits excellent anti-inflammatory effects as an IL-18 negative regulator. Mice were administered with an intraperitoneal injection of IL-18BP after HSR exposure and anxiety-like behavior was examined using the open-field test and elevated plus maze test. Moreover, the following variables post-HSR were measured: (1) the activation of astrocytes; (2) pyroptosis-associated factors including cleaved caspase-1, GSDMD, IL-18; (3) the roles of IL-18 receptor (IL-18R)-NOD-like receptor pyrin domain-containing-3 (NLRP3) signal with the application of the NLRP3 specific agonist or astrocyte-specific NLRP3 knockout mice. IL-18BP administration remarkably alleviated HSR-induced anxiety-like behavior, astrocytic activation, and increases in pyroptosis-associated factors, while NLRP3 agonist nigericin partially reversed IL-18BP-induced neuroprotective effects. Astrocyte-specific NLRP3 knockout mice exhibited relatively less anxiety-like behavior. Similarly, IL-18BP exhibited an anti-pyroptosis effect in astrocytes in an in vitro model of low oxygen-glucose deprivation. These findings offer unique perspectives on HSR-induced posttraumatic stress and indicate that inhibition of IL-18R–NLRP3 signal via IL-18BP can attenuate astrocytic activation and pyroptosis, broadening the therapeutic landscape for patients with psychological distress and posttraumatic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6(1):7360–7360

    Article  Google Scholar 

  2. Wu H, Huang T, Ying L, Han C, Li D, Xu Y, Zhang M, Mou S et al (2016) MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of FoxO3a and regulating renal tubular cell pyroptosis. Cell Physiol Biochem 40(6):1692–1705

    Article  CAS  Google Scholar 

  3. Nikolian VC, Georgoff PE, Pai MP, Dennahy IS, Chtraklin K, Eidy H, Ghandour MH, Han Y et al (2017) Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J Trauma Acute Care Surg 83(6):1066–1073. https://doi.org/10.1097/ta.0000000000001612

    Article  CAS  Google Scholar 

  4. Zhang LM, Zhang DX, Fu L, Li Y, Wang XP, Qi MM, Li CC, Song PP et al (2019) Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med 141:299–309. https://doi.org/10.1016/j.freeradbiomed.2019.06.031

    Article  CAS  Google Scholar 

  5. Compean E, Hamner M (2019) Posttraumatic stress disorder with secondary psychotic features (PTSD-SP): diagnostic and treatment challenges. Prog Neuro-Psychopharmacol Biol Psychiatry 88:265–275. https://doi.org/10.1016/j.pnpbp.2018.08.001

    Article  Google Scholar 

  6. Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17024. https://doi.org/10.1038/nrdp.2017.24

    Article  Google Scholar 

  7. Liu C, Chen J, Liu B, Yuan S, Shou D, Wen L, Wu X, Gong W (2018) Role of IL-18 in transplant biology. Eur Cytokine Netw 29(2):48–51. https://doi.org/10.1684/ecn.2018.0410

    Article  CAS  Google Scholar 

  8. Fantuzzi G, Reed DA, Dinarello CA (1999) IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor. J Clin Invest 104(6):761–767. https://doi.org/10.1172/jci7501

    Article  CAS  Google Scholar 

  9. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  Google Scholar 

  10. Hoshino K, Tsutsui H, Kawai T, Takeda K, Nakanishi K, Takeda Y, Akira S (1999) Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 162(9):5041–5044

    CAS  Google Scholar 

  11. Yang BY, Cheng YG, Liu Y, Liu Y, Tan JY, Guan W, Guo S, Kuang HX (2019) Datura Metel L. Ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MyD88-NF-κB-NLRP3 inflammasome pathway. Molecules 24(11). https://doi.org/10.3390/molecules24112157

  12. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S et al (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717):198–203. https://doi.org/10.1038/s41586-018-0372-z

    Article  CAS  Google Scholar 

  13. Sekerdag E, Solaroglu I, Gursoyozdemir Y (2018) Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol 16:1–1

    Article  Google Scholar 

  14. Yang J, Yao F, Zhang J, Ji Z, Li K, Zhan J, Tong Y, Lin L et al (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol-Renal Physiol 306(1)

  15. Slowik A, Lammerding L, Hoffmann S, Beyer C (2018) Brain inflammasomes in stroke and depressive disorders: regulation by oestrogen. J Neuroendocrinol 30(2). https://doi.org/10.1111/jne.12482

  16. Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA, Hurt ME, Paysour MJ, Ennerfelt HE et al (2020) AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580(7805):647–652. https://doi.org/10.1038/s41586-020-2174-3

    Article  CAS  Google Scholar 

  17. Coutinho-Budd JC, Broihier HT (2020) Pyroptosis takes aim at neurodevelopment. Dev Cell 53(5):498–499. https://doi.org/10.1016/j.devcel.2020.05.013

    Article  CAS  Google Scholar 

  18. Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP, Zhang LM (2020) CORM-3 improves emotional changes induced by hemorrhagic shock via the inhibition of pyroptosis in the amygdala. Neurochem Int 139:104784. https://doi.org/10.1016/j.neuint.2020.104784

    Article  CAS  Google Scholar 

  19. Li Y, Zhang LM, Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP (2020) CORM-3 ameliorates neurodegeneration in the amygdala and improves depression- and anxiety-like behavior in a rat model of combined traumatic brain injury and hemorrhagic shock. Neurochem Int 140:104842. https://doi.org/10.1016/j.neuint.2020.104842

    Article  CAS  Google Scholar 

  20. Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci U S A 97(3):1190–1195. https://doi.org/10.1073/pnas.97.3.1190

    Article  CAS  Google Scholar 

  21. Novick D, Schwartsburd B, Pinkus R, Suissa D, Belzer I, Sthoeger Z, Keane WF, Chvatchko Y et al (2001) A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 14(6):334–342. https://doi.org/10.1006/cyto.2001.0914

    Article  CAS  Google Scholar 

  22. Sifringer M, Stefovska V, Endesfelder S, Stahel PF, Genz K, Dzietko M, Ikonomidou C, Felderhoff-Mueser U (2007) Activation of caspase-1 dependent interleukins in developmental brain trauma. Neurobiol Dis 25(3):614–622. https://doi.org/10.1016/j.nbd.2006.11.003

    Article  CAS  Google Scholar 

  23. Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16(6):317–331. https://doi.org/10.1038/nrn3945

    Article  CAS  Google Scholar 

  24. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, Richards BA, Kim JC (2017) Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 42(8):1715–1728. https://doi.org/10.1038/npp.2017.56

    Article  Google Scholar 

  25. Salimando GJ, Hyun M, Boyt KM, Winder DG (2020) BNST GluN2D-containing NMDA receptors influence anxiety- and depressive-like behaviors and modulatecell-specific excitatory/inhibitory synaptic balance. J Neurosci 40(20):3949–3968. https://doi.org/10.1523/jneurosci.0270-20.2020

    Article  CAS  Google Scholar 

  26. Babaev O, Piletti Chatain C, Krueger-Burg D (2018) Inhibition in the amygdala anxiety circuitry. Exp Mol Med 50(4):1–16. https://doi.org/10.1038/s12276-018-0063-8

    Article  CAS  Google Scholar 

  27. Zhang XY, Peng SY, Shen LP, Zhuang QX, Li B, Xie ST, Li QX, Shi MR et al (2020) Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc Natl Acad Sci U S A 117(50):32155–32164. https://doi.org/10.1073/pnas.2008456117

    Article  CAS  Google Scholar 

  28. Xiao Q, Xu X, Tu J (2020) Chronic optogenetic manipulation of basolateral amygdala astrocytes rescues stress-induced anxiety. Biochem Biophys Res Commun 533(4):657–664. https://doi.org/10.1016/j.bbrc.2020.09.106

    Article  CAS  Google Scholar 

  29. Chen ML, Cao H, Chu YX, Cheng LZ, Liang LL, Zhang YQ, Zhao ZQ (2012) Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: multiple glial-neuronal dialogues in the rat spinal cord. J Pain 13(10):945–958. https://doi.org/10.1016/j.jpain.2012.06.007

    Article  CAS  Google Scholar 

  30. Qiang Z, Yu W (2019) Chemokine CCL7 regulates spinal phosphorylation of GluA1-containing AMPA receptor via interleukin-18 in remifentanil-induced hyperalgesia in rats. Neurosci Lett 711:134440. https://doi.org/10.1016/j.neulet.2019.134440

    Article  CAS  Google Scholar 

  31. Mansoori MN, Shukla P, Kakaji M, Tyagi AM, Srivastava K, Shukla M, Dixit M, Kureel J et al (2016) IL-18BP is decreased in osteoporotic women: prevents inflammasome mediated IL-18 activation and reduces Th17 differentiation. Sci Rep 6:33680. https://doi.org/10.1038/srep33680

    Article  CAS  Google Scholar 

  32. Sukhanov S, Higashi Y, Yoshida T, Mummidi S, Aroor AR, Jeffrey Russell J, Bender SB, DeMarco VG et al (2021) The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal 77:109825. https://doi.org/10.1016/j.cellsig.2020.109825

    Article  CAS  Google Scholar 

  33. Zhang L, Tian F, Gao X, Wang X, Wu C, Li N, Li J (2016) N-3 Polyunsaturated fatty acids improve liver lipid oxidation-related enzyme levels and increased the peroxisome proliferator-activated receptor α expression level in mice subjected to hemorrhagic shock/resuscitation. Nutrients 8(4):237. https://doi.org/10.3390/nu8040237

    Article  CAS  Google Scholar 

  34. Faggioni R, Cattley RC, Guo J, Flores S, Brown H, Qi M, Yin S, Hill D et al (2001) IL-18-binding protein protects against lipopolysaccharide- induced lethality and prevents the development of Fas/Fas ligand-mediated models of liver disease in mice. J Immunol 167(10):5913–5920. https://doi.org/10.4049/jimmunol.167.10.5913

    Article  CAS  Google Scholar 

  35. Shao S, Xu CB, Chen CJ, Shi GN, Guo QL, Zhou Y, Wei YZ, Wu L et al (2021) Divanillyl sulfone suppresses NLRP3 inflammasome activation via inducing mitophagy to ameliorate chronic neuropathic pain in mice. J Neuroinflammation 18(1):142. https://doi.org/10.1186/s12974-021-02178-z

    Article  CAS  Google Scholar 

  36. Fu L, Zhang DX, Zhang LM, Song YC, Liu FH, Li Y, Wang XP, Zheng WC et al (2020) Exogenous carbon monoxide protects against mitochondrial DNA-induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation. Int J Mol Med 45(4):1176–1186. https://doi.org/10.3892/ijmm.2020.4493

    Article  CAS  Google Scholar 

  37. Zarrindast MR, Babapoor-Farrokhran S, Babapoor-Farrokhran S, Rezayof A (2008) Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxiety-related behavior. Life Sci 82(23-24):1175–1181. https://doi.org/10.1016/j.lfs.2008.03.020

    Article  CAS  Google Scholar 

  38. Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A (2019) Neurobiological links between stress and anxiety. Neurobiol Stress 11:100191. https://doi.org/10.1016/j.ynstr.2019.100191

    Article  Google Scholar 

  39. Feduccia AA, Mithoefer MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms? Prog Neuro-Psychopharmacol Biol Psychiatry 84(Pt A):221–228. https://doi.org/10.1016/j.pnpbp.2018.03.003

    Article  CAS  Google Scholar 

  40. L'Ecuyer S, Gilbert K, Brochu B, Beyrouthy J, Liu C, Bouchard C, Gagné MA, Khazoom F et al (2021) Targeting uric acid prevents brain injury and anxiety in a rat model of hemorrhagic shock. Shock 56(2):298–307. https://doi.org/10.1097/shk.0000000000001708

    Article  CAS  Google Scholar 

  41. Leung K (2004) (99m)Tc-Interleukin-18-binding protein-Fc-interlukin-1 receptor antagonist. In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information (US), Bethesda (MD)

    Google Scholar 

  42. Reale M, Kamal MA, Velluto L, Gambi D, Di Nicola M, Greig NH (2012) Relationship between inflammatory mediators, Aβ levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res 9(4):447–457. https://doi.org/10.2174/156720512800492549

    Article  CAS  Google Scholar 

  43. Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P et al (2005) Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 57(1):50–59. https://doi.org/10.1002/ana.20322

    Article  CAS  Google Scholar 

  44. Yatsiv I, Morganti-Kossmann MC, Perez D, Dinarello CA, Novick D, Rubinstein M, Otto VI, Rancan M et al  (2002) Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab 22(8):971–978. https://doi.org/10.1097/00004647-200208000-00008

    Article  CAS  Google Scholar 

  45. Gong W, Shi Y, Ren J (2020) Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology 225(2):151884. https://doi.org/10.1016/j.imbio.2019.11.019

    Article  CAS  Google Scholar 

  46. Hagberg H, Gilland E, Bona E, Hanson LA, Hahin-Zoric M, Blennow M, Holst M, McRae A et al (1996) Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 40(4):603–609. https://doi.org/10.1203/00006450-199610000-00015

    Article  CAS  Google Scholar 

  47. Jeon GS, Park SK, Park SW, Kim DW, Chung CK, Cho SS (2008) Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse hippocampus. Neurochem Res 33(1):179–184. https://doi.org/10.1007/s11064-007-9434-6

    Article  CAS  Google Scholar 

  48. Andre R, Wheeler RD, Collins PD, Luheshi GN, Pickering-Brown S, Kimber I, Rothwell NJ, Pinteaux E (2003) Identification of a truncated IL-18R beta mRNA: a putative regulator of IL-18 expressed in rat brain. J Neuroimmunol 145(1-2):40–45. https://doi.org/10.1016/j.jneuroim.2003.09.005

    Article  CAS  Google Scholar 

  49. Cohen TS, Prince AS (2013) Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest 123(4):1630–1637. https://doi.org/10.1172/jci66142

    Article  CAS  Google Scholar 

  50. Mota M, Porrini V, Parrella E, Benarese M, Bellucci A, Rhein S, Schwaninger M, Pizzi M (2020) Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. J Neuroinflammation 17(1):361. https://doi.org/10.1186/s12974-020-02028-4

    Article  CAS  Google Scholar 

  51. Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial cells: role of the immune response in ischemic stroke. Front Immunol 11:294. https://doi.org/10.3389/fimmu.2020.00294

    Article  CAS  Google Scholar 

  52. Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP (2021) CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 341:113683. https://doi.org/10.1016/j.expneurol.2021.113683

    Article  CAS  Google Scholar 

  53. Cai M, Zhuang W, Lv E, Liu Z, Wang Y, Zhang W, Fu W (2021) Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson’s disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem Int 152:105221. https://doi.org/10.1016/j.neuint.2021.105221

    Article  CAS  Google Scholar 

  54. Amo-Aparicio J, Garcia-Garcia J, Puigdomenech M, Francos-Quijorna I, Skouras DB, Dinarello CA, Lopez-Vales R (2022) Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury. Exp Neurol 347:113889. https://doi.org/10.1016/j.expneurol.2021.113889

    Article  CAS  Google Scholar 

  55. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, Hauenstein AV, Wu Z et al (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570(7761):338–343. https://doi.org/10.1038/s41586-019-1295-z

    Article  CAS  Google Scholar 

  56. Wang YB, Shan NN, Chen O, Gao Y, Zou X, Wei DE, Wang CX, Zhang Y (2011) Imbalance of interleukin-18 and interleukin-18 binding protein in children with Henoch-Schönlein purpura. J Int Med Res 39(6):2201–2208. https://doi.org/10.1177/147323001103900616

    Article  CAS  Google Scholar 

  57. Zhang H, Wang J, Wang L, Xie H, Chen L, He S (2018) Role of IL-18 in atopic asthma is determined by balance of IL-18/IL-18BP/IL-18R. J Cell Mol Med 22(1):354–373. https://doi.org/10.1111/jcmm.13323

    Article  CAS  Google Scholar 

  58. Otterdal K, Berg A, Michelsen AE, Yndestad A, Patel S, Gregersen I, Halvorsen B, Ueland T et al (2021) IL-18 and IL-18 binding protein are related to disease severity and parasitemia during falciparum malaria. BMC Infect Dis 21(1):1073. https://doi.org/10.1186/s12879-021-06751-y

    Article  CAS  Google Scholar 

  59. Lima-Júnior RC, Freitas HC, Wong DV, Wanderley CW, Nunes LG, Leite LL, Miranda SP, Souza MH et al (2014) Targeted inhibition of IL-18 attenuates irinotecan-induced intestinal mucositis in mice. Br J Pharmacol 171(9):2335–2350. https://doi.org/10.1111/bph.12584

    Article  CAS  Google Scholar 

  60. Miyanishi K, Sato A, Kihara N, Utsunomiya R, Tanaka J (2021) Synaptic elimination by microglia and disturbed higher brain functions. Neurochem Int 142:104901. https://doi.org/10.1016/j.neuint.2020.104901

    Article  CAS  Google Scholar 

  61. Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P et al (2022) Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Sci Adv 8(9):eabj0112. https://doi.org/10.1126/sciadv.abj0112

    Article  CAS  Google Scholar 

  62. Hanlon LA, Raghupathi R, Huh JW (2019) Depletion of microglia immediately following traumatic brain injury in the pediatric rat: implications for cellular and behavioral pathology. Exp Neurol 316:39–51. https://doi.org/10.1016/j.expneurol.2019.04.004

    Article  Google Scholar 

  63. Hou B, Zhang Y, Liang P, He Y, Peng B, Liu W, Han S, Yin J, He X (2020) Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 11(5):377. https://doi.org/10.1038/s41419-020-2565-2

    Article  CAS  Google Scholar 

  64. Nakamura K, Kassem S, Cleynen A, Chrétien ML, Guillerey C, Putz EM, Bald T, Förster I et al (2018) Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell 33(4):634–648.e635. https://doi.org/10.1016/j.ccell.2018.02.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Dr. Xiao-Chun Zhao and Xiao-Ming Li for the critical reading of the manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81701296, 82171455) and the Natural Science Foundation of Hebei Province (No. H2021110004).

Author information

Authors and Affiliations

Authors

Contributions

Design of the study: Li-Min Zhang

Editing the manuscript: Dong-Xue Zhang, Li-Min Zhang, Wei Zhang

Statistical analysis: Li-Min Zhang, Dong-Xue Zhang

Experiment and data collection: Dong-Xue Zhang, Rong-Xin Song, Zhi-You Wu, Yan-Bo Zhou, Wei Zhang, Jin-Meng Lv, Lu-Ying Wang, Hui-Tao Miao, Yue Xin, Yan Li

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Min Zhang.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Institutional Animal Care and Use Committees of Cangzhou Central Hospital (2021-010-01[z]) and carried out in accordance with recommendations for the Animal Research: Reporting of In Vivo Experiment (ARRIVE) guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix Table S1

Key resources table (DOCX 20 kb)

Appendix Table S2

Details of statiscis (DOCX 82 kb)

Appendix Table S3

Details of animal grouping (DOCX 65 kb)

ESM 1

(A) Computer printouts showing the shifting trajectories of each group in the open field test on day 15 after trauma. (B) The time in the central zone for each group on day 15 after HSR. (C) Computer printouts showing the shifting trajectories of each group in the elevated plus maze test on day 15 after trauma. (D) The time spent in the open arm for each group on day 15 after HSR. The Data are presented as the mean ± SD (n =12 per group). P-values are reported in Appendix Table S2. ****P <0.0001, *P <0.05. (E) Representative photomicrographs from positive control (with the first and second antibody) and negative control (with the first but without the second antibody) of GFAP. Scale bar =50 μm (PNG 1530 kb)

High resolution image (TIF 2203 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LM., Zhang, DX., Song, RX. et al. IL-18BP Alleviates Anxiety-Like Behavior Induced by Traumatic Stress via Inhibition of the IL-18R-NLRP3 Signaling Pathway in a Mouse Model of Hemorrhagic Shock and Resuscitation. Mol Neurobiol 60, 382–394 (2023). https://doi.org/10.1007/s12035-022-03085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03085-x

Keywords

Navigation