Skip to main content

Advertisement

Log in

PTP1B Inhibitor Claramine Rescues Diabetes-Induced Spatial Learning and Memory Impairment in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating clinical and epidemiological studies indicate that learning and memory impairment is more prevalent among people with diabetes mellitus (DM). PTP1B is a member of protein tyrosine phosphatase family and participates in a variety of pathophysiological effects including inflammatory, insulin signaling pathway, and learning and memory. This study was aimed to investigate the effects of CA, a specific inhibitor of PTP1B, on spatial learning and memory impairment in diabetic mice caused by high-fat diet and injection of streptozotocin. We found that the protein expressions of PTP1B increased in hippocampal CA1, CA3, and PFC regions of diabetic mice. Network pharmacology results showed that PTP1B might be one of the key targets between diabetes and cognitive dysfunction, and CA might alleviate DM-induced cognitive dysfunction. Animal experiments showed that CA ameliorated DM-induced spatial learning and memory impairment, and improved glucose and lipid metabolic disorders. Moreover, administration of CA alleviated hippocampal structure damage and enhanced the expressions of synaptic proteins, including PSD-95, SYN-1, and SYP in diabetic mice. Furthermore, CA treatment not only significantly down-regulated the expressions of PTP1B and NLRP3 inflammatory related proteins (NLRP3, ASC, Caspase-1, COX-2, IL-1β, and TNF-α), but also significantly up-regulated the expressions of insulin signaling pathway–related proteins (p-IRS1, p-PI3K, p-AKT, and p-GSK-3β) in diabetic mice. Taken together, these results suggested that PTP1B might be a targeted strategy to rescue learning and memory deficits in DM, possibly through inhibition of NLRP3 inflammasome and regulation of insulin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data are available from the corresponding author on reasonable request.

Abbreviations

CA:

Claramine

DM:

Diabetes mellitus

AD:

Alzheimer disease

HFD:

High-fat diet

FBG:

Fasting blood glucose

STZ:

Streptozotocin

MWM:

Morris water maze

PTP1B:

Protein tyrosine phosphatase 1B

IRS1:

Insulin receptor substrates 1

AKT:

Protein kinase B

PI3K:

Phosphoinositide 3-kinase

GSK-3β:

Glycogen synthase kinase-3β

NLRP3:

Recombinant NLR family, pyrin domain containing protein 3

ASC:

Apoptosis-associated speck-like protein containing a CARD

Caspase-1:

Cysteinyl aspartate specific proteinase-1

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-18:

Interleukin-18

PSD-95:

Postsynaptic density protein-95

SYN-1:

Synapsin-1

SYP:

Synaptophysin

References

  1. Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, Goland R, Jones AG et al (2021) Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care 44(11):2449–2456. https://doi.org/10.2337/dc21-0770

    Article  CAS  Google Scholar 

  2. Shaw JE (2021) Paul Zimmet: a voice for diabetes. Diabetes Care 44(11):2460–2463. https://doi.org/10.2337/dci21-0040

    Article  Google Scholar 

  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A et al (2022) IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  Google Scholar 

  4. Jiao F, Fung CS, Wan YF, McGhee SM, Wong CK, Dai D, Kwok R, Lam CL (2016) Effectiveness of the multidisciplinary Risk Assessment and Management Program for Patients with Diabetes Mellitus (RAMP-DM) for diabetic microvascular complications: a population-based cohort study. Diabetes Metab 42(6):424–432. https://doi.org/10.1016/j.diabet.2016.07.030

    Article  CAS  Google Scholar 

  5. Maccari R, Del Corso A, Paoli P, Adornato I, Lori G, Balestri F, Cappiello M, Nass A et al (2018) An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorg Med Chem Lett 28(23–24):3712–3720. https://doi.org/10.1016/j.bmcl.2018.10.024

    Article  CAS  Google Scholar 

  6. Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, Kolpakov MA, Bashkirova YV et al (2019) Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol 56(3):1883–1896. https://doi.org/10.1007/s12035-018-1195-5

    Article  CAS  Google Scholar 

  7. Dove A, Shang Y, Xu W, Grande G, Laukka EJ, Fratiglioni L, Marseglia A (2021) The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimers Dement 17(11):1769–1778. https://doi.org/10.1002/alz.12482

    Article  Google Scholar 

  8. Gong J, Harris K, Hackett M, Peters SAE, Brodaty H, Cooper M, Hamet P, Harrap S et al (2021) Sex differences in risk factors for cognitive decline and dementia, including death as a competing risk, in individuals with diabetes: results from the ADVANCE trial. Diabetes Obes Metab 23(8):1775–1785. https://doi.org/10.1111/dom.14391

    Article  Google Scholar 

  9. Jacobson AM, Ryan CM, Braffett BH, Gubitosi-Klug RA, Lorenzi GM, Luchsinger JA, Trapani VR, Bebu I et al (2021) Cognitive performance declines in older adults with type 1 diabetes: results from 32 years of follow-up in the DCCT and EDIC Study. Lancet Diabetes Endocrinol 9(7):436–445. https://doi.org/10.1016/s2213-8587(21)00086-3

    Article  Google Scholar 

  10. Akimoto H, Negishi A, Oshima S, Wakiyama H, Okita M, Horii N, Inoue N, Ohshima S et al (2020) Antidiabetic drugs for the risk of Alzheimer disease in patients with type 2 DM using FAERS. Am J Alzheimers Dis Other Demen 35:1533317519899546. https://doi.org/10.1177/1533317519899546

    Article  Google Scholar 

  11. He Z, Han S, Zhu H, Hu X, Li X, Hou C, Wu C, Xie Q et al (2020) The protective effect of vanadium on cognitive impairment and the neuropathology of Alzheimer’s disease in APPSwe/PS1dE9 mice. Front Mol Neurosci 13:21. https://doi.org/10.3389/fnmol.2020.00021

    Article  CAS  Google Scholar 

  12. Park S, Kim DS, Kang S, Moon NR (2013) beta-Amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing beta-cell mass in non-diabetic and diabetic rats. Metabolism 62(12):1749–1760. https://doi.org/10.1016/j.metabol.2013.08.007

    Article  CAS  Google Scholar 

  13. Datusalia AK, Sharma SS (2014) Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol 50(2):390–405. https://doi.org/10.1007/s12035-014-8632-x

    Article  CAS  Google Scholar 

  14. Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, Cheng Y, Yu PQ et al (2021) The mTOR/NF-kappaB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 58(8):3848–3862. https://doi.org/10.1007/s12035-021-02390-1

    Article  CAS  Google Scholar 

  15. Feng H, Zhu X, Tang Y, Fu S, Kong B, Liu X (2021) Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome‑mediated inflammation. Int J Mol Med 48(2). https://doi.org/10.3892/ijmm.2021.4996

  16. Oh S, Yang J, Park C, Son K, Byun K (2021) Dieckol attenuated glucocorticoid-induced muscle atrophy by decreasing NLRP3 inflammasome and pyroptosis. Int J Mol Sci 22(15). https://doi.org/10.3390/ijms22158057

  17. Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q, Chen YB, Zhang SJ (2020) Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med 24(6):3449–3459. https://doi.org/10.1111/jcmm.15026

    Article  CAS  Google Scholar 

  18. Liu P, Li H, Wang Y, Su X, Li Y, Yan M, Ma L, Che H (2020) Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats. Front Pharmacol 11:535. https://doi.org/10.3389/fphar.2020.00535

    Article  CAS  Google Scholar 

  19. Ye T, Meng X, Wang R, Zhang C, He S, Sun G, Sun X (2018) Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice. Int J Mol Sci 19(12). https://doi.org/10.3390/ijms19123977

  20. Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S et al (2021) A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer’s disease transgenic mice. J Alzheimers Dis 82(4):1769–1783. https://doi.org/10.3233/JAD-210400

    Article  CAS  Google Scholar 

  21. Nguyen DT, To DC, Tran TT, Tran MH, Nguyen PH (2021) PTP1B and alpha-glucosidase inhibitors from Selaginella rolandi-principis and their glucose uptake stimulation. J Nat Med 75(1):186–193. https://doi.org/10.1007/s11418-020-01448-z

    Article  CAS  Google Scholar 

  22. Byeon HJ, Kim JY, Ko J, Lee EJ, Don K, Yoon JS (2020) Protein tyrosine phosphatase 1B as a therapeutic target for Graves’ orbitopathy in an in vitro model. PLoS ONE 15(8):e0237015. https://doi.org/10.1371/journal.pone.0237015

    Article  CAS  Google Scholar 

  23. Lee S, Kim S, Kang HY, Lim HR, Kwon Y, Jo M, Jeon YM, Kim SR et al (2020) The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J Neuroinflammation 17(1):299. https://doi.org/10.1186/s12974-020-01963-6

    Article  CAS  Google Scholar 

  24. Song GJ, Jung M, Kim JH, Park H, Rahman MH, Zhang S, Zhang ZY, Park DH et al (2016) A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation 13(1):86. https://doi.org/10.1186/s12974-016-0545-3

    Article  CAS  Google Scholar 

  25. Mendes NF, Castro G, Guadagnini D, Tobar N, Cognuck SQ, Elias LL, Boer PA, Prada PO (2017) Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior. Metabolism 70:1–11. https://doi.org/10.1016/j.metabol.2017.01.029

    Article  CAS  Google Scholar 

  26. Wang H, Sun X, Zhang N, Ji Z, Ma Z, Fu Q, Qu R, Ma S (2017) Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol Behav 182:93–100. https://doi.org/10.1016/j.physbeh.2017.10.001

    Article  CAS  Google Scholar 

  27. Ha MT, Shrestha S, Tran TH, Kim JA, Woo MH, Choi JS, Min BS (2020) Inhibition of PTP1B by farnesylated 2-arylbenzofurans isolated from Morus alba root bark: unraveling the mechanism of inhibition based on in vitro and in silico studies. Arch Pharm Res 43(9):961–975. https://doi.org/10.1007/s12272-020-01269-4

    Article  CAS  Google Scholar 

  28. Bansal S, Mahendiratta S, Agrawal M, Kumar S, Sharma AR, Garg N, Joshi R, Sarma P et al (2021) Role of protein tyrosine phosphatase 1B inhibitor in central insulin resistance and associated cognitive deficits. Brain Res Bull 171:113–125. https://doi.org/10.1016/j.brainresbull.2021.02.026

    Article  CAS  Google Scholar 

  29. Yang JB, Ye F, Tian JY, Song YF, Gao HY, Liu Y, Wang Q, Wang Y et al (2020) Multiflorumisides HK, stilbene glucosides isolated from Polygonum multiflorum and their in vitro PTP1B inhibitory activities. Fitoterapia 146:104703. https://doi.org/10.1016/j.fitote.2020.104703

    Article  CAS  Google Scholar 

  30. Qin Z, Pandey NR, Zhou X, Stewart CA, Hari A, Huang H, Stewart AF, Brunel JM et al (2015) Functional properties of claramine: a novel PTP1B inhibitor and insulin-mimetic compound. Biochem Biophys Res Commun 458(1):21–27. https://doi.org/10.1016/j.bbrc.2015.01.040

    Article  CAS  Google Scholar 

  31. Zhang R, Liao W, Wu K, Hua L, Wu M, Li C, Cai F (2022) Matrine alleviates spatial learning and memory impairment in diabetic mice by inhibiting endoplasmic reticulum stress and through modulation of PK2/PKRs pathway. Neurochem Int 154:105289. https://doi.org/10.1016/j.neuint.2022.105289

    Article  CAS  Google Scholar 

  32. Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, Cowley MA, Tiganis T (2019) Intranasal targeting of hypothalamic PTP1B and TCPTP reinstates leptin and insulin sensitivity and promotes weight loss in obesity. Cell Rep 28(11):2905-2922.e2905. https://doi.org/10.1016/j.celrep.2019.08.019

    Article  CAS  Google Scholar 

  33. Denver P, Gault VA, McClean PL (2018) Sustained high-fat diet modulates inflammation, insulin signalling and cognition in mice and a modified xenin peptide ameliorates neuropathology in a chronic high-fat model. Diabetes Obes Metab 20(5):1166–1175. https://doi.org/10.1111/dom.13210

    Article  CAS  Google Scholar 

  34. Maugard M, Doux C, Bonvento G (2019) A new statistical method to analyze Morris Water Maze data using Dirichlet distribution. F1000Res 8:1601. https://doi.org/10.12688/f1000research.20072.2

    Article  Google Scholar 

  35. Zhou T, Liu L, Wang Q, Gao Y (2020) Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice. J Food Biochem 44(9):e13375. https://doi.org/10.1111/jfbc.13375

    Article  CAS  Google Scholar 

  36. Song Y, Zhang F, Ying C, Kumar KA, Zhou X (2017) Inhibition of NF-kappaB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia. Metab Brain Dis 32(5):1627–1637. https://doi.org/10.1007/s11011-017-0013-5

    Article  CAS  Google Scholar 

  37. Lees EK, Krol E, Shearer K, Mody N, Gettys TW, Delibegovic M (2015) Effects of hepatic protein tyrosine phosphatase 1B and methionine restriction on hepatic and whole-body glucose and lipid metabolism in mice. Metabolism 64(2):305–314. https://doi.org/10.1016/j.metabol.2014.10.038

    Article  CAS  Google Scholar 

  38. Dos Santos MM, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB (2020) Identification of new targets and the virtual screening of lignans against Alzheimer’s disease. Oxid Med Cell Longev 2020:3098673. https://doi.org/10.1155/2020/3098673

    Article  CAS  Google Scholar 

  39. Vieira MN, Silva Lyra E, NM, Ferreira ST, De Felice FG, (2017) Protein Tyrosine Phosphatase 1B (PTP1B): a potential target for alzheimer’s therapy? Front Aging Neurosci 9:7. https://doi.org/10.3389/fnagi.2017.00007

    Article  CAS  Google Scholar 

  40. Xu K-K, Pan B-Y, Wang Y-Y, Ren Q-Q, Li C (2020) Roles of the PTP61F gene in regulating energy metabolism of Tribolium castaneum (Coleoptera: Tenebrionidae). Front Physiol 11:1071. https://doi.org/10.3389/fphys.2020.01071

    Article  Google Scholar 

  41. Bourebaba L, Kornicka-Garbowska K, Al Naem M, Rocken M, Lyczko J, Marycz K (2021) MSI-1436 improves EMS adipose derived progenitor stem cells in the course of adipogenic differentiation through modulation of ER stress, apoptosis, and oxidative stress. Stem Cell Res Ther 12(1):97. https://doi.org/10.1186/s13287-020-02102-x

    Article  CAS  Google Scholar 

  42. Nasseri B, Zareian P, Alizade H (2020) Apelin attenuates streptozotocin-induced learning and memory impairment by modulating necroptosis signaling pathway. Int Immunopharmacol 84:106546. https://doi.org/10.1016/j.intimp.2020.106546

    Article  CAS  Google Scholar 

  43. Tian H, Ding N, Guo M, Wang S, Wang Z, Liu H, Yang J, Li Y, et al (2019) Analysis of learning and memory ability in an Alzheimer's disease mouse model using the Morris water maze. J Vis Exp (152). https://doi.org/10.3791/60055

  44. Maan HB, Meo SA, Rouq FA, Meo IMU (2021) Impact of glycated hemoglobin (HbA1c) on cognitive functions in type 2 diabetic patients. Eur Rev Med Pharmacol Sci 25(19):5978–5985. https://doi.org/10.26355/eurrev_202110_26875

    Article  CAS  Google Scholar 

  45. Liu T, Bai Y, Ma L, Ma X, Wei W, Zhang J, Roberts N, Wang M (2020) Altered effective connectivity of bilateral hippocampus in type 2 diabetes mellitus. Front Neurosci 14:657. https://doi.org/10.3389/fnins.2020.00657

    Article  CAS  Google Scholar 

  46. Thomas J, Garg ML, Smith DW (2013) Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 28(4):613–618. https://doi.org/10.1007/s11011-013-9418-y

    Article  CAS  Google Scholar 

  47. Alkan I, Altunkaynak BZ, Gultekin GI, Baycu C (2021) Hippocampal neural cell loss in high-fat diet-induced obese rats-exploring the protein networks, ultrastructure, biochemical and bioinformatical markers. J Chem Neuroanat 114:101947. https://doi.org/10.1016/j.jchemneu.2021.101947

    Article  CAS  Google Scholar 

  48. Zhang X, Zhu Y, Zhou Y, Fei B (2020) Activation of Nrf2 signaling by apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab Syndr Obes 13:2169–2177. https://doi.org/10.2147/DMSO.S246743

    Article  CAS  Google Scholar 

  49. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. https://doi.org/10.1038/361031a0

    Article  CAS  Google Scholar 

  50. Xiang Q, Zhang J, Li CY, Wang Y, Zeng MJ, Cai ZX, Tian RB, Jia W et al (2015) Insulin resistance-induced hyperglycemia decreased the activation of Akt/CREB in hippocampus neurons: molecular evidence for mechanism of diabetes-induced cognitive dysfunction. Neuropeptides 54:9–15. https://doi.org/10.1016/j.npep.2015.08.009

    Article  CAS  Google Scholar 

  51. Hull C, Dekeryte R, Buchanan H, Kamli-Salino S, Robertson A, Delibegovic M, Platt B (2020) NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology 180:108305. https://doi.org/10.1016/j.neuropharm.2020.108305

    Article  CAS  Google Scholar 

  52. Li Q, Leng K, Liu Y, Sun H, Gao J, Ren Q, Zhou T, Dong J et al (2020) The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: an in vivo and in vitro study. Metabolism: Clin Exp 107:154231. https://doi.org/10.1016/j.metabol.2020.154231

    Article  CAS  Google Scholar 

  53. Wu XL, Deng MZ, Gao ZJ, Dang YY, Li YC, Li CW (2020) Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int Immunopharmacol 84:106559. https://doi.org/10.1016/j.intimp.2020.106559

    Article  CAS  Google Scholar 

  54. Li CW, Deng MZ, Gao ZJ, Dang YY, Zheng GD, Yang XJ, Chao YX, Cai YF et al (2020) Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food Funct 11(5):4416–4427. https://doi.org/10.1039/c9fo02602a

    Article  CAS  Google Scholar 

  55. Cai W, Zhang X, Batista TM, Garcia-Martin R, Softic S, Wang G, Ramirez AK, Konishi M et al (2021) Peripheral insulin regulates a broad network of gene expression in hypothalamus, hippocampus, and nucleus accumbens. Diabetes 70(8):1857–1873. https://doi.org/10.2337/db20-1119

    Article  CAS  Google Scholar 

  56. Wang S, Zhou SL, Min FY, Ma JJ, Shi XJ, Bereczki E, Wu J (2014) mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metab Brain Dis 29(3):729–736. https://doi.org/10.1007/s11011-014-9528-1

    Article  CAS  Google Scholar 

  57. Barone E, Di Domenico F, Perluigi M, Butterfield DA (2021) The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 176:16–33. https://doi.org/10.1016/j.freeradbiomed.2021.09.006

    Article  CAS  Google Scholar 

  58. Rahmati M, Keshvari M, Mirnasouri R, Chehelcheraghi F (2021) Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed Pharmacother 139:111577. https://doi.org/10.1016/j.biopha.2021.111577

    Article  CAS  Google Scholar 

  59. Wang Q, Hu J, Liu Y, Li J, Liu B, Li M, Lou S (2019) Aerobic exercise improves synaptic-related proteins of diabetic rats by inhibiting FOXO1/NF-κB/NLRP3 inflammatory signaling pathway and ameliorating PI3K/Akt insulin signaling pathway. J Mol Neurosci 69(1):28–38. https://doi.org/10.1007/s12031-019-01302-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81870576) to FC, Hubei University of Science and Technology (2021WG01) to FC, and Department of Education of Hubei Province (T201921, B2021225) to FC and WL.

Author information

Authors and Affiliations

Authors

Contributions

MW: writing original draft, methodology, formal analysis. WL: methodology, formal analysis, funding acquisition. RZ: formal analysis, project administration. YG: methodology, performed immunofluorescence examination. TC: performed immunofluorescence examination. LH: performed Morris water maze test. FC: project administration, writing original draft, funding acquisition.

Corresponding author

Correspondence to Fei Cai.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Animal Care and Use Committee of Hubei University of Science and Technology (Approval No: 2018–03-019).

Consent for Publication

The consent to publish this manuscript has been obtained from all authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The protein expressions of PTP1B increased in hippocampal CA1, CA3, and PFC regions of diabetic mice.

• PTP1B inhibitor claramine alleviated DM-induced spatial learning and memory impairment in mice.

• Inhibition of NLRP3 inflammasome and regulation of insulin signaling pathway were involved in the neuroprotective molecular mechanism of claramine.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Liao, W., Zhang, R. et al. PTP1B Inhibitor Claramine Rescues Diabetes-Induced Spatial Learning and Memory Impairment in Mice. Mol Neurobiol 60, 524–544 (2023). https://doi.org/10.1007/s12035-022-03079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03079-9

Keywords

Navigation