Skip to main content

Advertisement

Log in

Microglial NLRP3 Inflammasome Induces Excitatory Synaptic Loss Through IL-1β-Enriched Microvesicle Release: Implications for Sepsis-Associated Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acute cerebral dysfunction is a pathological state common in severe infections and a pivotal determinant of long-term cognitive outcomes. Current evidence indicates that a loss of synaptic contacts orchestrated by microglial activation is central in sepsis-associated encephalopathy. However, the upstream signals that lead to microglial activation and the mechanism involved in microglial-mediated synapse dysfunction in sepsis are poorly understood. This study investigated the involvement of the NLRP3 inflammasome in microglial activation and synaptic loss related to sepsis. We demonstrated that septic insult using the cecal ligation and puncture (CLP) model induced the expression of NLRP3 inflammasome components in the brain, such as NOD-, LRR-, and pyrin domain–containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, and IL-1β. Immunostaining techniques revealed increased expression of the NLRP3 inflammasome in microglial cells in the hippocampus of septic mice. Meanwhile, an in vitro model of primary microglia stimulated with LPS exhibited an increase in mitochondrial reactive oxygen species (ROS) production, NLRP3 complex recruitment, and IL-1β release. Pharmacological inhibition of NLRP3, caspase-1, and mitochondrial ROS all decreased IL-1β secretion by microglial cells. Furthermore, we found that microglial NLRP3 activation is the main pathway for IL-1β-enriched microvesicle (MV) release, which is caspase-1-dependent. MV released from LPS-activated microglia induced neurite suppression and excitatory synaptic loss in neuronal cultures. Moreover, microglial caspase-1 inhibition prevented neurite damage and attenuated synaptic deficits induced by the activated microglial MV. These results suggest that microglial NLRP3 inflammasome activation is the mechanism of IL-1β-enriched MV release and potentially synaptic impairment in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CLP:

Cecal ligation and puncture

NLRP3:

NOD-, LRR-, and pyrin domain–containing 3

ASC:

Apoptosis-associated speck-like protein containing a CARD

IL-1β:

Interleukin-1β

Iba1:

Ionized calcium-binding adaptor molecule 1

ROS:

Reactive oxygen species

LPS:

Lipopolysaccharide

MV:

Microvesicle

IL-18:

Interleukin-18

ATP:

Adenosine triphosphate

References

  1. Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  Google Scholar 

  2. Ely EW, Shintani A, Truman B et al (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762. https://doi.org/10.1001/jama.291.14.1753

    Article  CAS  Google Scholar 

  3. Pisani MA, Kong SYJ, Kasl SV et al (2009) Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med 180:1092–1097. https://doi.org/10.1164/rccm.200904-0537OC

    Article  Google Scholar 

  4. Girard TD, Jackson JC, Pandharipande PP et al (2010) Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 38:1513–1520. https://doi.org/10.1097/CCM.0b013e3181e47be1

    Article  Google Scholar 

  5. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794. https://doi.org/10.1001/jama.2010.1553

    Article  CAS  Google Scholar 

  6. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  Google Scholar 

  7. Dheen ST, Kaur C, Ling E-A (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197. https://doi.org/10.2174/092986707780597961

    Article  CAS  Google Scholar 

  8. Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  Google Scholar 

  9. Mazeraud A, Righy C, Bouchereau E et al (2020) Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 17:392–403. https://doi.org/10.1007/s13311-020-00862-1

    Article  Google Scholar 

  10. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153. https://doi.org/10.1111/jnc.13607

    Article  CAS  Google Scholar 

  11. Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53. https://doi.org/10.1016/j.nlm.2013.07.002

    Article  CAS  Google Scholar 

  12. Moraes CA, Zaverucha-do-Valle C, Fleurance R et al (2021) Neuroinflammation in sepsis: molecular pathways of microglia activation. Pharmaceuticals (Basel) 14:416. https://doi.org/10.3390/ph14050416

    Article  CAS  Google Scholar 

  13. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. https://doi.org/10.1146/annurev.immunol.021908.132528

    Article  CAS  Google Scholar 

  14. Hewett SJ, Jackman NA, Claycomb RJ (2012) Interleukin-1β in central nervous system injury and repair. Eur J Neurodegener Dis 1:195–211

    Google Scholar 

  15. Viviani B, Bartesaghi S, Gardoni F et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700

    Article  CAS  Google Scholar 

  16. Serantes R, Arnalich F, Figueroa M et al (2006) Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem 281:14632–14643. https://doi.org/10.1074/jbc.M512489200

    Article  CAS  Google Scholar 

  17. Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628:227–234. https://doi.org/10.1016/0006-8993(93)90959-q

    Article  CAS  Google Scholar 

  18. Katsuki H, Nakai S, Hirai Y et al (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181:323–326. https://doi.org/10.1016/0014-2999(90)90099-r

    Article  CAS  Google Scholar 

  19. Imamura Y, Wang H, Matsumoto N et al (2011) Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187:63–69. https://doi.org/10.1016/j.neuroscience.2011.04.063

    Article  CAS  Google Scholar 

  20. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  Google Scholar 

  21. Moraes CA, Santos G, de Sampaio e Spohr TCL et al (2015) Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis. Mol Neurobiol 52:653–663. https://doi.org/10.1007/s12035-014-8868-5

    Article  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  23. Katoh M, Wu B, Nguyen HB et al (2017) Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7:4942. https://doi.org/10.1038/s41598-017-05232-0

    Article  CAS  Google Scholar 

  24. Dezonne RS, Sartore RC, Nascimento JM et al (2017) Derivation of functional human astrocytes from cerebral organoids. Sci Rep 7:45091. https://doi.org/10.1038/srep45091

    Article  CAS  Google Scholar 

  25. Ståhl A-L, Johansson K, Mossberg M et al (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30. https://doi.org/10.1007/s00467-017-3816-z

    Article  Google Scholar 

  26. Tarassishin L, Casper D, Lee SC (2014) Aberrant expression of interleukin-1β and inflammasome activation in human malignant gliomas. PLoS ONE 9:e103432. https://doi.org/10.1371/journal.pone.0103432

    Article  CAS  Google Scholar 

  27. Pan Y, Chen X-Y, Zhang Q-Y, Kong L-D (2014) Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100. https://doi.org/10.1016/j.bbi.2014.04.007

    Article  CAS  Google Scholar 

  28. He W, Long T, Pan Q et al (2019) Microglial NLRP3 inflammasome activation mediates IL-1β release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J Neuroinflammation 16:78. https://doi.org/10.1186/s12974-019-1459-7

    Article  Google Scholar 

  29. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  Google Scholar 

  30. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477. https://doi.org/10.1038/nri3705

    Article  CAS  Google Scholar 

  31. Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1β/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119:736–748. https://doi.org/10.1111/j.1471-4159.2011.07481.x

    Article  CAS  Google Scholar 

  32. Song L, Pei L, Yao S et al (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:63. https://doi.org/10.3389/fncel.2017.00063

    Article  CAS  Google Scholar 

  33. Holbrook JA, Jarosz-Griffiths HH, Caseley E et al (2021) Neurodegenerative disease and the NLRP3 inflammasome. Front Pharmacol 12:643254. https://doi.org/10.3389/fphar.2021.643254

    Article  CAS  Google Scholar 

  34. Sui D, Xie Q, Yi W et al (2016) Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β axis in microglia. Mediators Inflamm 2016:1045657. https://doi.org/10.1155/2016/1045657

    Article  CAS  Google Scholar 

  35. Gustin A, Kirchmeyer M, Koncina E et al (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS ONE 10:e0130624. https://doi.org/10.1371/journal.pone.0130624

    Article  CAS  Google Scholar 

  36. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225. https://doi.org/10.1038/nature09663

    Article  CAS  Google Scholar 

  37. Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277. https://doi.org/10.4049/jimmunol.174.11.7268

    Article  CAS  Google Scholar 

  38. Joshi P, Turola E, Ruiz A et al (2014) Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 21:582–593. https://doi.org/10.1038/cdd.2013.180

    Article  CAS  Google Scholar 

  39. Bianco F, Perrotta C, Novellino L et al (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054. https://doi.org/10.1038/emboj.2009.45

    Article  CAS  Google Scholar 

  40. Dempsey C, Rubio Araiz A, Bryson KJ et al (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun 61:306–316. https://doi.org/10.1016/j.bbi.2016.12.014

    Article  CAS  Google Scholar 

  41. Mao Z, Liu C, Ji S et al (2017) The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem Res 42:1104–1115. https://doi.org/10.1007/s11064-017-2185-0

    Article  CAS  Google Scholar 

  42. Kilkenny C, Browne WJ, Cuthi I et al (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet Clin Pathol 41:27–31. https://doi.org/10.1111/j.1939-165X.2012.00418.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank Edson Fernandes Assis and Rose Branco Rodrigues for their technical assistance.

Funding

This work was supported by the National Institute of Science and Technology (CNPq), the Rio de Janeiro State Research Supporting Foundation (FAPERJ), and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

C.A.M., E.D.H., D.D.S.O., D.A., C.T.A., T.M.G., H.S.B., P.T.B., and F.A.B. designed the research; C.A.M., E.D.H., D.D.S.O., D.A., C.T.A., T.M.G, C.Z.V., and J.C.D. performed the experiments; C.A.M., E.D.H., D.D.S.O., D.A., C.T.A., H.S.B., C.Z.V., J.C.D., P.T.B., and F.A.B. analyzed the data; C.A.M. and F.A.B. wrote the manuscript.

Corresponding author

Correspondence to Fernando Augusto Bozza.

Ethics declarations

Ethics Approval

The Animal Welfare Committee of the Oswaldo Cruz Foundation (CEUA/FIOCRUZ) approved and covered (015/2015) the experiments in this study. The procedures described in this study were according to the local guidelines and guidelines published in the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The study is reported in accordance with the ARRIVE guidelines for reporting experiments involving animals [42].

Consent to Participate and Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

DMSO does not affect microglial cells. ELISA for IL-1β in the culture supernatant of unstimulated microglial cells (MCM), microglial cells stimulated with LPS (MCM-LPS), or microglial cells incubated with the diluent of the drugs (dimethyl sulfoxide, DMSO) used in the in vitro experiments (MCM+DMSO; MCM-LPS+DMSO). DMSO (0.4%) did not affect microglial cells (MCM vs. MCM-DMSO and MCM-LPS vs. MCM-LPS+DMSO). t-test. N=4 per condition. (PNG 138 kb)

High resolution image (TIF 2906 kb)

Supplemental Fig. 2

Microglial-derived MV are increased by LPS and LPS+ATP in culture. (a) Annexin V fluorescence intensity histogram in microglia microvesicles from unstimulated control culture supernatant (MVM; gray), cultures activated with 1 μg/mL LPS for 24 hours (MVM-LPS; red), or cultures treated with 1 μg/mL LPS for 5 hours followed by 10 μM ATP for 50 minutes (MVM-LPS+ATP; black). (b) Quantitative flow cytometric analysis of annexin V from MVM, MVM-LPS, and MVM-LPS+ATP. *p<0.05; one-way ANOVA with Tukey’s for multiple comparisons. N=4 per condition. (PNG 95 kb)

High resolution image (TIF 128 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, C.A., Hottz, E.D., Dos Santos Ornellas, D. et al. Microglial NLRP3 Inflammasome Induces Excitatory Synaptic Loss Through IL-1β-Enriched Microvesicle Release: Implications for Sepsis-Associated Encephalopathy. Mol Neurobiol 60, 481–494 (2023). https://doi.org/10.1007/s12035-022-03067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03067-z

Keywords

Navigation