Skip to main content
Log in

Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pain in Parkinson’s disease (PD) is increasingly recognized as a major factor associated with poor life quality of PD patients. However, classic therapeutic drugs supplying dopamine have limited therapeutic effects on PD-related pain. This suggests that there is a mechanism outside the dopamine system that causes pain in PD. Our previous study demonstrated that 6-OHDA induced PD model manifested hyperalgesia to thermal and mechanical stimuli and decreased serotonin (5-hydroxytryptamine; 5-HT) in the spinal dorsal horn (SDH). Several 5-HT receptor subtypes have been confirmed to be associated with nociception in the spinal cord, such as 5-HT1A receptor, 5-HT1B receptor, 5-HT2 receptor, 5-HT3 receptor, and 5-HT7 receptor. Most research has shown that 5-HT1A receptor and 5-HT3 receptor play a key role in pain transmission in the spinal cord. We hypothesized that hyperalgesia of 6-OHDA rats may be related to increased excitability of SDH neurons, and functional change of 5-HT3 receptor may reverse the hyperalgesia of 6-OHDA lesioned rats and decrease cell excitability of SDH neurons. To test this hypothesis, we used whole-cell patch-clamp and pharmacological methods to evaluate the effect of 5-HT3 receptor and 5-HT1A receptor on the hyperalgesia of 6-OHDA rats. The results suggested that increased excitability in SDH neurons could be reversed by 5-HT3 receptor antagonist ondansetron (20 μmol/L) and palosetron (10 μmol/L), but not 5-HT3 receptor agonist m-CPBG (30 μmol/L) and SR 57,727 (10 μmol/L), 5-HT1A receptor agonist 8-OH DPAT (10 μmol/L) and eptapirone (10 μmol/L) and 5-HT1A receptor antagonist WAY-100635 (10 μmol/L) and p-MPPI (10 μmol/L). Intrathecal injection of ondansetron (0.1 mg/kg) but not m-CPBG (0.1 mg/kg), 8-OH DPAT (0.1 mg/kg), and WAY-100635 (0.1 mg/kg) significantly attenuated the mechanical hyperalgesia and thermal hyperalgesia in 6-OHDA lesioned rats. In conclusion, the present study suggests that inhibition of spinal 5-HT3 receptor and SDH neuronal excitability alleviates hyperalgesia in PD rats. Our study provides a novel mechanism or therapeutic strategy for pain in patients with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated in the current research are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

5-HT:

5-Hydroxytryptamine; serotonin

AP:

Action potential

PD:

Parkinson’s disease

SDH:

Spinal dorsal horn

SNpc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

L4-L6:

Fourth to sixth lumbar spinal cord

References

  1. Abe K, Kato G, Katafuchi T, Tamae A, Furue H, Yoshimura M (2009) Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro. Neuroscience 159:316–324. https://doi.org/10.1016/j.neuroscience.2008.12.021

    Article  CAS  PubMed  Google Scholar 

  2. Alhaider AA, Lei SZ, Wilcox GL (1991) Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 11:1881–1888. https://doi.org/10.1523/jneurosci.11-07-01881.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antonini A, Tinazzi M (2015) Targeting pain in Parkinson’s disease. Lancet Neurol 14:1144–1145. https://doi.org/10.1016/s1474-4422(15)00286-0

    Article  PubMed  Google Scholar 

  4. Bardoni R (2019) Serotonergic modulation of nociceptive circuits in spinal cord dorsal horn. Curr Neuropharmacol 17:1133–1145. https://doi.org/10.2174/1570159X17666191001123900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boura E, Stamelou M, Vadasz D, Ries V, Unger MM, Kagi G, Oertel WH, Moller JC et al (2017) Is increased spinal nociception another hallmark for Parkinson’s disease? J Neurol 264:570–575. https://doi.org/10.1007/s00415-016-8390-y

    Article  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  7. Broen MP, Braaksma MM, Patijn J, Weber WE (2012) Prevalence of pain in Parkinson’s disease: a systematic review using the modified QUADAS tool. Mov Disord 27:480–484. https://doi.org/10.1002/mds.24054

    Article  PubMed  Google Scholar 

  8. Cao LF, Peng XY, Huang Y, Wang B, Zhou FM, Cheng RX, Chen LH, Luo WF et al (2016) Restoring spinal noradrenergic inhibitory tone attenuates pain hypersensitivity in a rat model of Parkinson’s disease. Neural Plast 2016:6383240. https://doi.org/10.1155/2016/6383240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Charles KA, Naudet F, Bouali-Benazzouz R, Landry M, De Deurwaerdere P, Fossat P, Benazzouz A (2018) Alteration of nociceptive integration in the spinal cord of a rat model of Parkinson’s disease. Mov Disord 33:1010–1015. https://doi.org/10.1002/mds.27377

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhuri KR, Healy DG, Schapira AHV (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245. https://doi.org/10.1016/s1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  11. Chen Y, Oatway MA, Weaver LC (2009) Blockade of the 5-HT3 receptor for days causes sustained relief from mechanical allodynia following spinal cord injury. J Neurosci Res 87:418–424. https://doi.org/10.1002/jnr.21860

    Article  CAS  PubMed  Google Scholar 

  12. De la Calle JL, Paíno CL (2002) A procedure for direct lumbar puncture in rats. Brain Res Bull 59:245–250. https://doi.org/10.1016/s0361-9230(02)00866-3

    Article  PubMed  Google Scholar 

  13. Doly S, Fischer J, Brisorgueil MJ, Vergé D, Conrath M (2005) Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence. J Comp Neurol 490:256–269. https://doi.org/10.1002/cne.20667

    Article  CAS  PubMed  Google Scholar 

  14. Eide PK (1998) Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 36:601–612. https://doi.org/10.1038/sj.sc.3100737

    Article  CAS  PubMed  Google Scholar 

  15. Eide PK, Joly NM, Hole K (1990) The role of spinal cord 5-HT1A and 5-HT1B receptors in the modulation of a spinal nociceptive reflex. Brain Res 536:195–200. https://doi.org/10.1016/0006-8993(90)90025-7

    Article  CAS  PubMed  Google Scholar 

  16. Fil A, Cano-de-la-Cuerda R, Munoz-Hellin E, Vela L, Ramiro-Gonzalez M, Fernandez-de-Las-Penas C (2013) Pain in Parkinson disease: a review of the literature. Parkinsonism Relat Disord 19:285–294; discussion 285 https://doi.org/10.1016/j.parkreldis.2012.11.009

  17. Ford B (2010) Pain in Parkinson’s disease. Mov Disord 25(Suppl 1):S98-103. https://doi.org/10.1002/mds.22716

    Article  PubMed  Google Scholar 

  18. Fukushima T, Ohtsubo T, Tsuda M, Yanagawa Y, Hori Y (2009) Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J Neurophysiol 102:1459–1471. https://doi.org/10.1152/jn.91160.2008

    Article  CAS  PubMed  Google Scholar 

  19. Giordano J (1991) Analgesic profile of centrally administered 2-methylserotonin against acute pain in rats. Eur J Pharmacol 199:233–236. https://doi.org/10.1016/0014-2999(91)90462-y

    Article  CAS  PubMed  Google Scholar 

  20. Giordano J, Schultea T (2004) Serotonin 5-HT(3) receptor mediation of pain and anti-nociception: implications for clinical therapeutics. Pain Physician 7:141–147

    Article  PubMed  Google Scholar 

  21. Hayashida K, Kimura M, Yoshizumi M, Hobo S, Obata H, Eisenach JC (2012) Ondansetron reverses antihypersensitivity from clonidine in rats after peripheral nerve injury: role of γ-aminobutyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia. Anesthesiology 117:389–398. https://doi.org/10.1097/ALN.0b013e318260d381

    Article  CAS  PubMed  Google Scholar 

  22. Hori Y, Endo K, Takahashi T (1996) Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J Physiol 492(Pt 3):867–876. https://doi.org/10.1113/jphysiol.1996.sp021352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu B, Doods H, Treede RD, Ceci A (2016) Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci Lett 619:162–167. https://doi.org/10.1016/j.neulet.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Wang YY, Wang W, Li YQ, Tamamaki N, Wu SX (2008) 5-HT(3A) receptor subunit is expressed in a subpopulation of GABAergic and enkephalinergic neurons in the mouse dorsal spinal cord. Neurosci Lett 441:1–6. https://doi.org/10.1016/j.neulet.2008.04.105

    Article  CAS  PubMed  Google Scholar 

  25. Ito A, Kumamoto E, Takeda M, Shibata K, Sagai H, Yoshimura M (2000) Mechanisms for ovariectomy-induced hyperalgesia and its relief by calcitonin: participation of 5-HT1A-like receptor on C-afferent terminals in substantia gelatinosa of the rat spinal cord. J Neurosci 20:6302–6308. https://doi.org/10.1523/jneurosci.20-16-06302.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeong HJ, Mitchell VA, Vaughan CW (2012) Role of 5-HT(1) receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn. Br J Pharmacol 165:1956–1965. https://doi.org/10.1111/j.1476-5381.2011.01685.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JM, Jeong SW, Yang J, Lee SH, Kim WM, Jeong S, Bae HB, Yoon MH et al (2015) Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation. Neurosci Lett 600:91–97. https://doi.org/10.1016/j.neulet.2015.05.058

    Article  CAS  PubMed  Google Scholar 

  28. Li M, Zhu M, Xu Q, Ding F, Tian Y, Zhang M (2020) Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson’s disease. Biochem Biophys Res Commun 521:868–873. https://doi.org/10.1016/j.bbrc.2019.10.204

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Su S, Yu J, Peng M, Wan S, Ke C (2021) Electrophysiological properties of substantia gelatinosa neurons in the preparation of a slice of middle-aged rat spinal cord. Front Aging Neurosci 13:640265. https://doi.org/10.3389/fnagi.2021.640265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li YC, Tian YQ, Wu YY, Xu YC, Zhang PA, Sha J, Xu GY (2020) Upregulation of spinal ASIC1 and NKCC1 expression contributes to chronic visceral pain in rats. Front Mol Neurosci 13:611179. https://doi.org/10.3389/fnmol.2020.611179

    Article  CAS  PubMed  Google Scholar 

  31. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437. https://doi.org/10.1126/science.1718042

    Article  CAS  PubMed  Google Scholar 

  32. Marlier L, Teilhac JR, Cerruti C, Privat A (1991) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550:15–23. https://doi.org/10.1016/0006-8993(91)90400-p

    Article  CAS  PubMed  Google Scholar 

  33. Oatway MA, Chen Y, Weaver LC (2004) The 5-HT3 receptor facilitates at-level mechanical allodynia following spinal cord injury. Pain 110:259–268. https://doi.org/10.1016/j.pain.2004.03.040

    Article  CAS  PubMed  Google Scholar 

  34. Obata H (2017) Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci 18 https://doi.org/10.3390/ijms18112483

  35. Perrin FE, Gerber YN, Teigell M, Lonjon N, Boniface G, Bauchet L, Rodriguez JJ, Hugnot JP et al (2011) Anatomical study of serotonergic innervation and 5-HT(1A) receptor in the human spinal cord. Cell Death Dis 2:e218. https://doi.org/10.1038/cddis.2011.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sagalajev B, Bourbia N, Beloushko E, Wei H, Pertovaara A (2015) Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors. Behav Brain Res 282:14–24. https://doi.org/10.1016/j.bbr.2014.12.052

    Article  CAS  PubMed  Google Scholar 

  37. Santana MB, Halje P, Simplicio H, Richter U, Freire MAM, Petersson P, Fuentes R, Nicolelis MAL (2014) Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron 84:716–722. https://doi.org/10.1016/j.neuron.2014.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shirakashi Y, Kawamoto Y, Tomimoto H, Takahashi R, Ihara M (2006) Alpha-Synuclein is colocalized with 14–3-3 and synphilin-1 in A53T transgenic mice. Acta Neuropathol 112:681–689. https://doi.org/10.1007/s00401-006-0132-2

    Article  CAS  PubMed  Google Scholar 

  39. Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 90:1430–1434. https://doi.org/10.1073/pnas.90.4.1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thor KB, Nickolaus S, Helke CJ (1993) Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B and 5-hydroxytryptamine1C/2 binding sites in the rat spinal cord. Neuroscience 55:235–252. https://doi.org/10.1016/0306-4522(93)90469-v

    Article  CAS  PubMed  Google Scholar 

  41. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836. https://doi.org/10.1038/nrn2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tong Q, Zhang L, Yuan Y et al (2015) Reduced plasma serotonin and 5-hydroxyindoleacetic acid levels in Parkinson’s disease are associated with nonmotor symptoms. Parkinsonism Relat Disord 21:882–887. https://doi.org/10.1016/j.parkreldis.2015.05.016

    Article  PubMed  Google Scholar 

  43. Wang CT, Mao CJ, Zhang XQ et al (2017) Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Mol Pain 13:1744806917691525. https://doi.org/10.1177/1744806917691525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Zhu H, Zou K, Yuan B, Zhou YL, Jiang X, Yan J, Xu GY (2015) Sensitization of P2X3 receptors by cystathionine β-synthetase mediates persistent pain hypersensitivity in a rat model of lumbar disc herniation. Mol Pain 11:15. https://doi.org/10.1186/s12990-015-0012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie DJ, Uta D, Feng PY, Wakita M, Shin MC, Furue H, Yoshimura M (2012) Identification of 5-HT receptor subtypes enhancing inhibitory transmission in the rat spinal dorsal horn in vitro. Mol Pain 8:58. https://doi.org/10.1186/1744-8069-8-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81801258), Natural Science Foundation of Jiangsu Province (BK20170355), Jiangsu Provincial social development projects (BE2018658, BE201765), Gusu Health Talents Training Project (GSWS2019041, GSWS2020035), Discipline Construction Program of the Second Affiliated Hospital Soochow University (XKTJ-XK202001 and XKTJ-XK202004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

FW, CJM, and CFL designed the study. CJL, LGZ, LBL, and MQA performed the experiments and collected data. CJL, LGZ, LBL, MQA, LGD, HYG, and YPD performed data analysis and interpretation. CJL and LGZ drafted the article, FW and CJM revised it critically for important intellectual content, and FW gave final approval of the version to be submitted.

Corresponding authors

Correspondence to Fen Wang or Cheng-Jie Mao.

Ethics declarations

Ethics Approval

This study was approved by the Animal Use and Care Committee of Soochow University and followed the guidelines of the International Association for the Study of Pain.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CJ., Zhang, LG., Liu, LB. et al. Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson’s Disease. Mol Neurobiol 59, 7253–7264 (2022). https://doi.org/10.1007/s12035-022-03034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03034-8

Keywords

Navigation