Skip to main content
Log in

Brain Metabolic DNA: A Long Story and Some Conclusions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have previously outlined the main properties of brain metabolic DNA (BMD) and its involvement in circadian oscillations, learning, and post-trial sleep. The presence of BMD in certain subcellular fractions and their behavior in cesium gradients have suggested that BMD originates from cytoplasmic reverse transcription and subsequently acquires a double-stranded configuration. More recently, it has been reported that some DNA sequences of cytoplasmic BMD in learning mice are different from that of the control animals. Furthermore, BMD is located in vicinity of the genes involved in different modifications of synaptic activity, suggesting that BMD may contribute to the brain’s response to the changing environment. The present review outlines recent data with a special emphasis on reverse transcription of BMD that may recapitulate the molecular events at the time of the “RNA world” by activating mitochondrial telomerase and generating RNA templates from mitochondrial transcripts. The latter unexpected role of mitochondria is likely to promote a better understanding of mitochondrial contribution to cellular interactions and eukaryotic evolution. An initial step regards the role of human mitochondria in embryonic BMD synthesis, which is exclusively of maternal origin. In addition, mitochondrial transcripts involved in reverse transcription of BMD might possibly reveal unexpected features elucidating mitochondrial involvement in cancer events and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Pelc SR (1968) Biological implications of DNA-turnover in higher organisms. Acta Histochem Suppl 8:441–452

    Google Scholar 

  2. Giuditta A, Rutigliano B (2018) Brain metabolic DNA in rat cytoplasm. Mol Neurobiol 55:7476–7486. https://doi.org/10.1007/s12035-018-0932-0

    Article  CAS  Google Scholar 

  3. Prisco M, Casalino J, Cefaliello C, Giuditta A (2019) Brain metabolic DNA is reverse transcribed in cytoplasm: evidence by immunofluorescence analysis. Mol Neurobiol 56:6770–6776. https://doi.org/10.1007/s12035-019-1569-3

    Article  CAS  Google Scholar 

  4. Giuditta A, Casalino J (2020) Sequences of reverse transcribed brain DNA are modified by learning. Front Mol Neurosci 13:57. https://doi.org/10.3389/fnmol.2020.00057

    Article  CAS  Google Scholar 

  5. Koenig H (1958) An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis. J Biophys Biochem Cytol 4:785–792. https://doi.org/10.1083/jcb.4.6.785

    Article  CAS  Google Scholar 

  6. Giuditta A (1983) Role of DNA in brain activity. In: Lajtha A (ed) Handbook of Neurochemistry, vol 5. Plenum Press, New York, pp 251–276

    Chapter  Google Scholar 

  7. Pelc SR (1962) Incorporation of tritiated thymidine in various organs of the mouse. Nature 193:793–795. https://doi.org/10.1038/193793a0

    Article  CAS  Google Scholar 

  8. Pelc SR (1964) Labelling of DNA and cell division in so called non-dividing tissues. J Cell Biol 22:21–28. https://doi.org/10.1083/jcb.22.1.21

    Article  CAS  Google Scholar 

  9. Pelc SR (1972) Metabolic DNA in ciliated protozoa, salivary gland chromosomes, and mammalian cells. Int Rev Cytol 32:327–355. https://doi.org/10.1016/s0074-7696(08)60344-7

    Article  CAS  Google Scholar 

  10. Stroun M, Charles P, Anker P, Pelc SR (1967) Metabolic DNA in heart and skeletal muscle and in the intestine of mice. Nature 216:716–717. https://doi.org/10.1038/216716a0

    Article  CAS  Google Scholar 

  11. Appleton TC, Pelc SR, Tarbit MH (1969) Formation and loss of DNA in intestinal epithelium. J Cell Sci 5:45–55

    Article  CAS  Google Scholar 

  12. Harris G, Pelc SR (1970) Incorporation of [3H] thymidine into the spleens of intact mice during the immune response to sheep erythrocytes (SRC). Immunol 19:865–878

    CAS  Google Scholar 

  13. Pelc SR, Viola-Magni MP (1969) Decrease of labeled DNA in cells of the adrenal medulla after intermittent exposure to cold. J Cell Biol 42:460–468. https://doi.org/10.1083/jcb.42.2.460

    Article  CAS  Google Scholar 

  14. Giuditta A, Grassi-Zucconi G, Sadile AG (2017) Brain metabolic DNA in memory processing and genome turnover. Rev Neurosci 28:21–30. https://doi.org/10.1515/revneuro-2016-0027

    Article  CAS  Google Scholar 

  15. Reinis S (1970) Delayed learning deficit produced by hydroxylamine. Physiol Behav 5:253–256. https://doi.org/10.1016/0031-9384(70)90075-2

    Article  CAS  Google Scholar 

  16. Reinis S (1971) Further study of the learning deficit produced by hydroxylamine. Physiol Behav 6:31–33. https://doi.org/10.1016/0031-9384(71)90009-6

    Article  CAS  Google Scholar 

  17. Reinis S (1972) Autoradiographic study of 3-H-thymidine incorporation into brain DNA during learning. Physiol Chem Phys 4:391–397

    CAS  Google Scholar 

  18. Reinis S (1972) Hydroxylamine as an amnestic agent. Agents Actions 2:216–222. https://doi.org/10.1007/BF02087045

    Article  CAS  Google Scholar 

  19. Reinis S, Lamble RW (1972) Labeling of brain DNA by 3-H-thymidine during learning. Physiol Chem Phys 4:335–338

    CAS  Google Scholar 

  20. Reinis S, Abbott J, Clarke JJ (1972) Brain DNA changes during learning studied by administration of 5-iodo-2’-deoxyuridine. Physiol Chem Phys 4:440–448

    CAS  Google Scholar 

  21. Reinis S (1975) Effects of hydroxylamine on the consequences of long-lasting administration of morphine in mice. I. Effect on the morphine tolerance. Arch Int Pharmacol 215(222):229

    Google Scholar 

  22. Reinis S (1975) Effects of hydroxylamine on the consequences of long-lasting administration of morphine in mice. II. Time course of the hydroxylamine effect on morphine tolerance. Arch Int Pharmacol 215:230–237

    CAS  Google Scholar 

  23. Reinis S (1975) Effect of hydroxylamine on the consequences of long-lasting administration of morphine in mice. III. Effect on preferred drinking of morphine solution. Arch Int Pharmacol 215:238–245

    CAS  Google Scholar 

  24. Reinis S (1975) Incorporation of (3H)thymidine into brain DNA after cerebellar damage. Pediatr Res 9:807–811. https://doi.org/10.1203/00006450-197511000-00001

    Article  CAS  Google Scholar 

  25. Kinberlin RH, Anger HS (1969) DNA synthesis in the glial cells of scrapie-affected mouse brain. J Neurochem 16:543–548. https://doi.org/10.1111/j.1471-4159.1969.tb06853.x

    Article  Google Scholar 

  26. Kimberin RH (1972) The nature of the increased rate of DNA synthesis in scrapie-affected mouse brain. J Neurochem 19:2767–2778. https://doi.org/10.1111/j.1471-4159.1972.tb03814.x

    Article  Google Scholar 

  27. Kimberlin RH, Shirt DB, Collis SC (1974) The turnover of isotopically labelled DNA in vivo in developing, adult and scrapie-affected mouse brain. J Neurochem 23:241–248. https://doi.org/10.1111/j.1471-4159.1974.tb06940.x

    Article  CAS  Google Scholar 

  28. Merits I, Cain J (1969) Rapid loss of labeled DNA from rat brain due to radiation damage. Biochim Biophys Acta 174:315–321. https://doi.org/10.1016/0005-2787(69)90256-1

    Article  CAS  Google Scholar 

  29. Merits I, Cain J (1970) Loss of labelled DNA from rat brain following injections of precursors with high specific radioactivity. II. DNA labelled with 5-[131I]iodo-2’-deoxyuridine and 5-[82Br]bromo-2’-deoxyuridine. Biochim Biophys Acta 209:327–338. https://doi.org/10.1016/0005-2787(70)90731-8

    Article  CAS  Google Scholar 

  30. Giuditta A, Libonati M, Packard A, Prozzo N (1971) Nuclear counts in the brain lobes of Octopus vulgaris as a function of body size. Brain Res 25:55–62. https://doi.org/10.1016/0006-8993(71)90566-x

    Article  CAS  Google Scholar 

  31. De Marianis B, Giuditta A (1978) Separation of nuclei with different DNA content from the subesophageal lobe of octopus brain. Brain Res 154:134–136. https://doi.org/10.1016/0006-8993(78)91059-4

    Article  Google Scholar 

  32. De Marianis B, Olmo E, Giuditta A (1979) Excess DNA in the nuclei of the subesophageal region of octopus brain. J Comp Neurol 186:293–300. https://doi.org/10.1002/cne.901860211

    Article  Google Scholar 

  33. Giuditta A, De Marianis B, Sorrentino P (2017) Hyperdiploid DNA from octopus brain is enriched in AT sequences. Rendiconti dellìAccademia di Scienze Fisiche e Matematiche LXXXIV 5–16

  34. Giuditta A, Abrescia P, Rutigliano B (1978) Effect of electroshock on thymidine incorporation into rat brain DNA. J Neurochem 31:983–987. https://doi.org/10.1111/j.1471-4159.1978.tb00137.x

    Article  CAS  Google Scholar 

  35. Perrone-Capano C, D’Onofrio G, Giuditta A (1982) DNA turnover in rat cerebral cortex. J Neurochem 38:52–56. https://doi.org/10.1111/j.1471-4159.1982.tb10852.x

    Article  CAS  Google Scholar 

  36. Grassi ZG, Carandente F, Menichini E, Belia S, Giuditta A (1988) Circadian rhythms of DNA content in brain and kidney: effects of environmental stimulation. Chronobiol 15:195–204

    Google Scholar 

  37. Grassi Zucconi G, Menichini E, Castigli E, Belia S, Giuditta A (1988) Circadian oscillations of DNA synthesis in rat brain. Brain Res 447:253–261. https://doi.org/10.1016/0006-8993(88)91127-4

    Article  CAS  Google Scholar 

  38. Grassi Zucconi G, Crognale MC, Bassetti MA, Giuditta A (1990) Environmental stimuli modulate the circadian rhythm of [3H- methyl] thymidine incorporation into brain DNA of male rats. Behav Brain Res 41:103–110. https://doi.org/10.1016/0166-4328(90)90146-6

    Article  Google Scholar 

  39. Giuditta A, Perrone Capano C, D’Onofrio G, Toniatti C, Menna T, Hydèn H (1986) Synthesis of rat brain DNA during acquisition of an appetitive task. Pharmacol Biochem Behav 25:651–658. https://doi.org/10.1016/0091-3057(86)90155-3

    Article  CAS  Google Scholar 

  40. Scaroni R, Ambrosini MV, Principato GB, Federici F, Ambrosi G, Giuditta A (1983) Synthesis of brain DNA during acquisition of an active avoidance task. Physiol Behav 30:577–582. https://doi.org/10.1016/0031-9384(83)90224-x

    Article  CAS  Google Scholar 

  41. Papa M, Pellicano MP, Cerbone A et al (1995) Immediate early genes and brain DNA remodeling in the Naples high and low-excitability rat lines following exposure to a spatial novelty. Brain Res Bull 37:111–118. https://doi.org/10.1016/0361-9230(94)00254-x

    Article  CAS  Google Scholar 

  42. Ashapkin VV, Romanov GA, Tushmalova NA, Vanyushin BF (1983) Selective DNA synthesis in the rat brain induced by learning. Biokhimija 48:355–362

    CAS  Google Scholar 

  43. Ivashkina OI, Zots MA, Bezriadnov DV, Anokhin KV (2012) Increased 5’-bromo-2’-deoxyuridine incorporation in various brain structures following passive avoidance training in mice. Bull Ex Bio Me 154:171–173. https://doi.org/10.1007/s10517-012-1901-7

    Article  CAS  Google Scholar 

  44. Komissarova NV, Tiunova AA, Anokhin KV (2010) Selective impairments to memory consolidation in chicks produced by 5’-iodo-2’-deoxyuridine. Neurosci Behav Physiol 40:215–223. https://doi.org/10.1007/s11055-009-9237-0

    Article  CAS  Google Scholar 

  45. Efimova OI, Anokhin KV (2012) 5-Bromo-2’-deoxyuridine impairs long-term food aversion memory in edible snail. Bull Exp Biol Med 153:767–770. https://doi.org/10.1007/s10517-012-1822-5

    Article  CAS  Google Scholar 

  46. Shevelkin AV, Efimova OI, Nikitin VP, Anokhin KV, Sherstnev VV (2012) Specific changes in c-fos expression and colocalization with DNA in identified neuronal nuclei of edible snail following neurotransmitter application. Bull Exp Biol Med 153:734–737. https://doi.org/10.1007/s10517-012-1813-6

    Article  CAS  Google Scholar 

  47. Ambrosini MV, Mariucci G, Bruschelli G, Colarieti L, Giuditta A (1995) Sequential hypothesis of sleep function. V. Lengthening of post-trial SS episodes in reminiscent rats. Physiol Behav 58:1043–1049. https://doi.org/10.1016/0031-9384(95)00143-7

    Article  CAS  Google Scholar 

  48. Mariucci G, Bruschelli G, Colarieti L, Gambelunghe C, Ambrosini MV (1998) Ital J Zool 65:311–314

    Article  Google Scholar 

  49. Giuditta A, Ambrosini MV, Scaroni R, Chiurulla C, Sadile A (1985) Effect of sleep on cerebral DNA synthesized during shuttle-box avoidance training. Physiol Behav 34:769–778. https://doi.org/10.1016/0031-9384(85)90376-2

    Article  CAS  Google Scholar 

  50. Ambrosini MV, Sadile AG, Gironi Carnevale UA, Mattiaccio M, Giuditta A (1988) The sequential hypothesis on sleep function. I. Evidence that the structure of sleep depends on the nature of the previous waking experience. Physiol Behav 43:325–337. https://doi.org/10.1016/0031-9384(88)90196-5

    Article  CAS  Google Scholar 

  51. Ambrosini MV, Sadile AG, Gironi Carnevale UA, Mattiaccio M, Giuditta A (1988) The sequential hypothesis on sleep function. II. A correlative study between sleep variables and newly synthesized brain DNA. Physiol Behav 43:339–350. https://doi.org/10.1016/0031-9384(88)90197-7

    Article  CAS  Google Scholar 

  52. Langella M, Colarieti L, Ambrosini MV, Giuditta A (1992) The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and non-learning rats. Physiol Behav 51:227–238. https://doi.org/10.1016/0031-9384(92)90135-o

    Article  CAS  Google Scholar 

  53. Rutigliano B, Giuditta A (2015) The unexpected recovery of misplaced data on brain metabolic DNA. Rendiconti dellìAccademia di Scienze Fisiche e Matematiche LXXXII 99–106

  54. Cefaliello C, Prisco M, Crispino M, Giuditta A (2019) DNA in squid synaptosomes. Mol Neurobiol 56:56–60. https://doi.org/10.1007/s12035-018-1071-3

    Article  CAS  Google Scholar 

  55. Bregnard A, Knüsel A, Kuenzle C (1975) Are all the neuronal nuclei polyploid? Histochem 43:59–61. https://doi.org/10.1007/BF00490154

    Article  CAS  Google Scholar 

  56. Bregnard A, Kuenzle CC, Ruch F (1977) Cytophotometric and autoradiographic evidence for post-natal DNA synthesis in neurons of the rat cerebral cortex. Exp Cell Res 107:151–157. https://doi.org/10.1016/0014-4827(77)90396-2

    Article  CAS  Google Scholar 

  57. Kuenzle CC, Bregnard A, Hübscher U, Ruch F (1978) Extra DNA in forebrain cortical neurons. Exp Cell Res 113:151–160. https://doi.org/10.1016/0014-4827(78)90095-2

    Article  CAS  Google Scholar 

  58. Hobi R, Studer M, Ruch F, Kuenzle CC (1984) The DNA content of cerebral cortex neurons. Determinations by cytophotometry and high performance liquid chromatography. Brain Res 305:209–219. https://doi.org/10.1016/0006-8993(84)90427-x

    Article  CAS  Google Scholar 

  59. Bibbiani C, Viola-Magni MP (1975) Metabolic DNA in the hepatocyte nuclei in newborn rats. Histochem 43:63–72. https://doi.org/10.1007/BF00490155

    Article  CAS  Google Scholar 

  60. Mirmiran M, Maas YGH, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7:321–334. https://doi.org/10.1053/smrv.2002.0243

    Article  Google Scholar 

  61. Grassi Zucconi G, Belia S, Franciolini F, Menichini E, Giuditta A (1984) Effect of paradoxical sleep deprivation on DNA synthesis in fetal rat brain. Intern J Develop Neurosci 2:585–590. https://doi.org/10.1016/0736-5748(84)90036-4

    Article  CAS  Google Scholar 

  62. Grassi Zucconi G, Belia S, Menichini E, Castigli E, Giuditta A (1986) Paradoxical sleep deprivation of the mother enhances DNA synthesis in fetal rat brain: autoradiographic and biochemical evidence. Int J Dev Neurosci 4:169–178. https://doi.org/10.1016/0736-5748(86)90042-0

    Article  CAS  Google Scholar 

  63. Marco A, Meharena HS, Dileep V et al (2020) Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble. Nat Neurosci 23:1606–1617. https://doi.org/10.1038/s41593-020-00717-0

    Article  CAS  Google Scholar 

  64. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610. https://doi.org/10.1038/nn.3975

    Article  CAS  Google Scholar 

  65. van Rossum D, Verheijen BM, Pasterkamp RJ (2016) Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci 9:74. https://doi.org/10.3389/fnmol.2016.00074

    Article  CAS  Google Scholar 

  66. Yang Q, Wu J, Zhao J et al (2018) Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC Syst Biol 12(Suppl 8):128. https://doi.org/10.1186/s12918-018-0651-1

    Article  CAS  Google Scholar 

  67. Suberbielle E, Sanchez PE, Kravitz AV et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-F. Nat Neurosci 16:613–621. https://doi.org/10.1038/nn.3356

    Article  CAS  Google Scholar 

  68. Madabhushi R, Gao F, Pfenning AR et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605. https://doi.org/10.1016/j.cell.2015.05.032

    Article  CAS  Google Scholar 

  69. Giuditta A, Grassi Zucconi G, Sadile A (2020). Brain metabolic DNA: recent evidence for a mitochondrial connection. Rev Neurosci 32(1):93–100. https://doi.org/10.1515/revneuro-2020-0050

  70. Fedorov A, Fedorova L (2004) Introns: mighty elements from the RNA world. Mol Evol 59:718–721. https://doi.org/10.1007/s00239-004-2660-5

    Article  CAS  Google Scholar 

  71. Talini G, Branciamore S, Gallori E (2011) Ribozymes: flexible molecular devices at work. Biochimie 93:1998–2005. https://doi.org/10.1016/j.biochi.2011.06.026

    Article  CAS  Google Scholar 

  72. Neveu M, Kim H-J, Benner SA (2013) The “strong” RNA world hypothesis: fifty years old. Astrobiol 13:391–403. https://doi.org/10.1089/ast.2012.0868

    Article  Google Scholar 

  73. Sankaran N (2016) The RNA world at thirty: a look back with its author. J Mol Evol 83:169–175. https://doi.org/10.1007/s00239-016-9767-3

    Article  CAS  Google Scholar 

  74. Zhu XH, Qiao H, Du F et al (2012) Quantitative imaging of energy expenditure in human brain. Neuroimage 60:2107–2117. https://doi.org/10.1016/j.neuroimage.2012.02.013

    Article  Google Scholar 

  75. Cardanho-Ramos C, Faria-Pereira A, Morais VA (2020) Orchestrating mitochondria in neurons: cytoskeleton as the conductor. Cytoskeleton (Hoboken) 77:65–75. https://doi.org/10.1002/cm.21585

    Article  CAS  Google Scholar 

  76. Berglund AK, Navarrete C, Engqvist MK et al (2017) Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet 16:13. https://doi.org/10.1371/journal.pgen.1006628

    Article  CAS  Google Scholar 

  77. Moss CF, Dalla Rosa I, Hunt LE et al (2017) Aberrant ribonucleotide incorporation and multiple deletions in mitochondrial DNA of the murine MPV17 disease model. Nucleic Acids Res 45:12808–12815. https://doi.org/10.1093/nar/gkx1009

    Article  CAS  Google Scholar 

  78. Cluett TJ, Akman G, Reyes A et al (2018) Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 46:10771–10781. https://doi.org/10.1093/nar/gky852

    Article  CAS  Google Scholar 

  79. Cheng Y, Liu P, Zheng Q et al (2018) Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep 4:2589–2595. https://doi.org/10.1016/j.celrep.2018.08.003

    Article  CAS  Google Scholar 

  80. Zheng Q, Huang J, Wang G (2019) Mitochondria, telomeres and telomerase subunits. Front Cell Dev Biol 7:274. https://doi.org/10.3389/fcell.2019.00274

    Article  Google Scholar 

  81. Stott RT, Kritsky O, L-H, (2021) Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS ONE 16(7):e0249691. https://doi.org/10.1371/journal.pone.0249691

    Article  CAS  Google Scholar 

  82. Panfoli I, Ravera S, Bruschi M, Candiano G, Morelli A (2011) Proteomics unravels the exportability of mitochondrial respiratory chains. Expert Rev Proteomics 8:231–239. https://doi.org/10.1586/epr.11.1

    Article  CAS  Google Scholar 

  83. Thakurela S, Garding A, Jung RB, Müller C, Goebbels S et al (2016) The transcriptome of mouse central nervous system myelin. Sci Rep 6:25828. https://doi.org/10.1038/srep25828

    Article  CAS  Google Scholar 

  84. Ghosh T, Almeida RG, Zhao C, Gonzalez MG, Stott K et al (2022) A retroviral origin of vertebrate myelin bioRxiv. https://doi.org/10.1101/2022.01.24.477350

  85. Cruz ACP, Ferrasa A, Muotri AR, Herai RH (2018) Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 46:345–360. https://doi.org/10.1016/j.mito.2018.09.005

    Article  CAS  Google Scholar 

  86. Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF (2018) The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol Neuropsychiatry 4:52–69. https://doi.org/10.1159/000488031

    Article  CAS  Google Scholar 

  87. Wei W, Pagnamenta AT, Gleadall N et al (2020) Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nature Commun 11:1740. https://doi.org/10.1038/s41467-020-15336-3

    Article  CAS  Google Scholar 

  88. Mfossa ACM, Puthenparampil HT, Inalegwu A et al (2019) Exposure to ionizing radiation triggers prolonged changes in circular RNA abundance in the embryonic mouse brain and primary neurons. Cells 8:778. https://doi.org/10.3390/cells8080778

    Article  CAS  Google Scholar 

  89. Li M-L, Wang W, Zi-B J (2021) Circular RNAs in the central nervous system. Front Mol Biosci 8:629593. https://doi.org/10.3389/fmolb.2021.629593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Marianna Crispino, University of Naples Federico II, and Dr. Chun Jong Tai, Stazione Zoologica Anton Dohrn, Naples, for their helpful collaboration and comments to our manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this study, read, and approved the final manuscript.

Corresponding author

Correspondence to Antonio Giuditta.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors agreed.

Consent for Publication

All authors agreed.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuditta, A., Zucconi, G.G. & Sadile, A. Brain Metabolic DNA: A Long Story and Some Conclusions. Mol Neurobiol 60, 228–234 (2023). https://doi.org/10.1007/s12035-022-03030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03030-y

Keywords

Navigation