Skip to main content

Advertisement

Log in

MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2022

This article has been updated

Abstract

Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  1. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7(12):911–920

    Article  CAS  PubMed  Google Scholar 

  2. Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H et al (2021) The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. Mol Ther Nucleic acids 26:892–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mirzaei H, Hamblin MR (2020) Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. Mol Ther Oncol 19:218–239

    Article  CAS  Google Scholar 

  4. Khani P, Nasri F, Khani Chamani F, Saeidi F, Sadri Nahand J, Tabibkhooei A et al (2019) Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem 148(2):188–203

    Article  CAS  PubMed  Google Scholar 

  5. Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR et al (2021) Roles of Non-coding RNAs and Angiogenesis in Glioblastoma. Front Cell Dev Biol 9:716462

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmadpour S, Taghavi T, Sheida A, Tamehri Zadeh SS, Hamblin MR, Mirzaei H (2022) Effects of microRNAs and long non-coding RNAs on chemotherapy response in glioma. Epigenomics

  7. Fiore R, Schratt G (2007) MicroRNAs in synapse development: tiny molecules to remember. Expert Opin Biol Ther 7(12):1823–1831

    Article  CAS  PubMed  Google Scholar 

  8. Chandrasekar V, Dreyer J-L (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362

    Article  CAS  PubMed  Google Scholar 

  9. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289

    Article  CAS  PubMed  Google Scholar 

  10. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124(1):191–205

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McLeod F, Salinas PC (2018) Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 53:90–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc B: Biol Sci 369(1633):20130288

    Article  CAS  Google Scholar 

  14. Chater TE, Goda Y (2014) The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci 8:401

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henley JM, Wilkinson KA (2016) Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17(6):337–350

    Article  CAS  PubMed  Google Scholar 

  16. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wibrand K, Panja D, Tiron A, Ofte ML, Skaftnesmo KO, Lee CS et al (2010) Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci 31(4):636–645

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu C-C, Tsai C-W, Deak F, Rogers J, Penuliar M, Sung YM et al (2014) Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron 84(1):63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McLeod F, Bossio A, Marzo A, Ciani L, Sibilla S, Hannan S et al (2018) Wnt signaling mediates LTP-dependent spine plasticity and AMPAR localization through frizzled-7 receptors. Cell Rep 23(4):1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farías GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C et al (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284(23):15857–15866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Woods BJ, Van Vactor D (2021) miRNA: local guardians of presynaptic function in plasticity and disease. RNA Biol 18(7):1014–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41

    Article  PubMed  Google Scholar 

  24. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C-Z, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  26. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y et al (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes & development 22(18):2535–49

    Article  CAS  Google Scholar 

  28. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P et al (2003) The nuclear RNase III Drosha initiates microRNA processing Nature 425:415-9

  30. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  33. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350

    Article  CAS  PubMed  Google Scholar 

  34. MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145

    Article  CAS  PubMed  Google Scholar 

  35. Zhang MC, Lv Y, Qi YT, Zhang Z, Fu XN, Yuan CG et al (2008) Knockdown and overexpression of miR-219 lead to embryonic defects in zebrafish development. Fen zi xi bao sheng wu xue bao=. J Mol Cell Biol 41(5):341–8

    CAS  Google Scholar 

  36. Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J et al (2016) Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease. J Alzheimers Dis 49(1):1–12

    Article  PubMed  CAS  Google Scholar 

  37. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25(1):103–126

    Article  CAS  PubMed  Google Scholar 

  38. Manakov SA, Grant SG, Enright AJ (2009) Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation. BMC Genomics 10(1):419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Willemsen MH, Vallès A, Kirkels LA, Mastebroek M, Loohuis NO, Kos A et al (2011) Chromosome 1p21. 3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet 48(12):810–8

    Article  CAS  PubMed  Google Scholar 

  40. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218(3):817–831

    Article  PubMed  Google Scholar 

  42. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M et al (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30(44):14835–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loohuis NFO, Ba W, Stoerchel PH, Kos A, Jager A, Schratt G et al (2015) MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD. Cell Rep 11(12):1876–1884

    Article  CAS  Google Scholar 

  44. Chen Y-L, Shen C-KJ (2013) Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci 33(21):9013–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B, Ofte ML et al (2012) MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS ONE 7(7):e41688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murai K, Sun G, Ye P, Tian E, Yang S, Cui Q et al (2016) The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun 7(1):1–15

    Article  CAS  Google Scholar 

  47. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18(3):297–300

    Article  CAS  PubMed  Google Scholar 

  48. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2012) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: A TaqMan® Low Density Array study. Int J Mol Med 31(1):129–137

    Article  PubMed  CAS  Google Scholar 

  49. Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S et al (2015) Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics 16(5):1–15

    Google Scholar 

  50. Hudish LI, Galati DF, Ravanelli AM, Pearson CG, Huang P, Appel B (2016) miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development 143(13):2292–2304

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Fan M, Wang Q, He G, Fu Y, Li H et al (2015) Polymorphisms in microRNA genes and genes involving in NMDAR signaling and schizophrenia: a case-control study in Chinese Han population. Sci Rep 5:12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q et al (2013) Single-nucleotide polymorphisms inside microRNA target sites influence the susceptibility to type 2 diabetes. J Hum Genet 58(3):135–141

    Article  CAS  PubMed  Google Scholar 

  53. McGee MA, Abdel-Rahman AA (2016) N-methyl-D-aspartate receptor signaling and function in cardiovascular tissues. J Cardiovasc Pharmacol 68(2):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu B, Zhang H, Xu C, Yang G, Tao J, Huang J et al (2011) Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Res 1375:59–67

    Article  CAS  PubMed  Google Scholar 

  55. Wang C, Wan S, Yang T, Niu D, Zhang A, Yang C et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6(1):1–9

    CAS  Google Scholar 

  56. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ et al (2012) Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151(4):709–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clement JP, Ozkan ED, Aceti M, Miller CA, Rumbaugh G (2013) SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity. J Neurosci 33(25):10447–10452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Govek E-E, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49

    Article  CAS  PubMed  Google Scholar 

  59. Zukin RS, Richter J, Bagni C (2009) Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circuits 3:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22(3):383–388

    Article  CAS  PubMed  Google Scholar 

  61. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9(5):344–356

    Article  CAS  PubMed  Google Scholar 

  62. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem cells 28(6):1060–1070

    Article  CAS  PubMed  Google Scholar 

  63. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kasri NN, Van Aelst L (2008) Rho-linked genes and neurological disorders. Pflügers Archiv-Eur J Physiol 455(5):787–797

    Article  CAS  Google Scholar 

  65. Pavlowsky A, Chelly J, Billuart P (2012) Emerging major synaptic signaling pathways involved in intellectual disability. Mol Psychiatry 17(7):682–693

    Article  CAS  PubMed  Google Scholar 

  66. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hou Q, Ruan H, Gilbert J, Wang G, Ma Q, Yao W-D et al (2015) MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat Commun 6:10045

    Article  CAS  PubMed  Google Scholar 

  68. Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477

    Article  PubMed  Google Scholar 

  69. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu J-Y, Chung K-H, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  73. Franke K, Otto W, Johannes S, Baumgart J, Nitsch R, Schumacher S (2012) miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J 31(13):2908–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y et al (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14(9):1125–1134

    Article  CAS  PubMed  Google Scholar 

  75. Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ et al (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63(6):803–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW et al (2014) Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20(12):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T et al (2014) GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 61:1–12

    Article  CAS  PubMed  Google Scholar 

  78. Gu Q-H, Yu D, Hu Z, Liu X, Yang Y, Luo Y et al (2015) miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun 6:6789

    Article  CAS  PubMed  Google Scholar 

  79. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci 102(45):16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng H-YM et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci 105(26):9093–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng HYM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP et al (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54(5):813–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM et al (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20(4):492–498

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V et al (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS ONE 7(5):e38174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salta E, De Strooper B (2017) microRNA-132: A key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J 31(2):424–433

    Article  CAS  PubMed  Google Scholar 

  85. Impey S, Davare M, Lasiek A, Fortin D, Ando H, Varlamova O et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43(1):146–156

    Article  CAS  PubMed  Google Scholar 

  86. Lambert TJ, Storm DR, Sullivan JM (2010) MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS ONE 5(12):e15182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64(1):355–405

    Article  CAS  PubMed  Google Scholar 

  88. Sippy T, Cruz-Martín A, Jeromin A, Schweizer FE (2003) Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 6(10):1031–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS ONE 5(11):e15497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J et al (2020) Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis 134:104617

    Article  CAS  PubMed  Google Scholar 

  91. Remenyi J, van den Bosch MW, Palygin O, Mistry RB, McKenzie C, Macdonald A et al (2013) miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS ONE 8(4):e62509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bastle RM, Oliver RJ, Gardiner AS, Pentkowski NS, Bolognani F, Allan AM et al (2018) In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 23(2):434

    Article  CAS  PubMed  Google Scholar 

  93. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y (2012) Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 10(4):e1001314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tripurani SK, Lee K-B, Wee G, Smith GW, Yao J (2011) MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol 11(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Go H, La P, Namba F, Ito M, Yang G, Brydun A et al (2016) MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. Am J Physiol Lung Cell Mol Physiol 311(2):L400–L411

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yekta S, Shih I-h, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–6

    Article  CAS  PubMed  Google Scholar 

  97. Her L-S, Mao S-H, Chang C-Y, Cheng P-H, Chang Y-F, Yang H-I et al (2017) miR-196a Enhances Neuronal Morphology through Suppressing RANBP10 to Provide Neuroprotection in Huntington’s Disease. Theranostics 7(9):2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93(2):306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fu MH, Li CL, Lin HL, Tsai SJ, Lai YY, Chang YF et al (2015) The Potential Regulatory Mechanisms of miR-196a in Huntington’s Disease through Bioinformatic Analyses. PLoS ONE 10(9):e0137637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90(4):753–762

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ et al (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25(1):43–56

    Article  PubMed  Google Scholar 

  102. Kruger RP, Aurandt J, Guan KL (2005) Semaphorins command cells to move. Nat Rev Mol Cell Biol 6(10):789–800

    Article  CAS  PubMed  Google Scholar 

  103. Chen C, Li M, Chai H, Yang H, Fisher WE, Yao Q (2005) Roles of neuropilins in neuronal development, angiogenesis, and cancers. World J Surg 29(3):271–275

    Article  PubMed  Google Scholar 

  104. Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS et al (2002) Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem 277(20):18069–18076

    Article  CAS  PubMed  Google Scholar 

  105. Chen C, Li M, Chai H, Yang H, Fisher WE, Yao Q (2005) Roles of neuropilins in neuronal development, angiogenesis, and cancers. World J Surg 29(3):271–275

    Article  PubMed  Google Scholar 

  106. Scott HL, Tamagnini F, Narduzzo KE, Howarth JL, Lee YB, Wong LF et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36(7):2941–2948

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lee K, Kim J-H, Kwon O-B, An K, Ryu J, Cho K et al (2012) An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J Neurosci 32(16):5678–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang L, Chen ZW, Yang SF, Shaer M, Wang Y, Dong JJ et al (2019) Micro RNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway. CNS Neurosci Ther 25(1):69–77

    Article  CAS  PubMed  Google Scholar 

  109. Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM, Kitazawa M (2014) Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis 42(4):1229–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ryan B, Logan BJ, Abraham WC, Williams JM (2017) MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in Dentate Gyrus Neuropil following induction of long-term potentiation in vivo. PLoS ONE 12(1):e0170407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hu Z, Yu D, Gu Q-h, Yang Y, Tu K, Zhu J et al (2014) miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 5:3263

  112. Li B, Sun H (2013) MiR-26a promotes neurite outgrowth by repressing PTEN expression. Mol Med Rep 8(2):676–680

    Article  PubMed  Google Scholar 

  113. Joilin G, Guévremont D, Ryan B, Claudianos C, Cristino AS, Abraham WC et al (2014) Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front Mol Neurosci 7:98

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ma J-C, Duan M-J, Li K-X, Biddyut D, Zhang S, Yan M-L et al (2018) Knockdown of MicroRNA-1 in the Hippocampus ameliorates myocardial infarction induced impairment of long-term potentiation. Cell Physiol Biochem 50(4):1601–1616

    Article  CAS  PubMed  Google Scholar 

  115. Sim S-E, Lim C-S, Kim J-I, Seo D, Chun H, Yu N-K et al (2016) The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J Neurosci 36(33):8641–8652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang J, Hu M, Teng Z, Tang Y-P, Chen C (2014) Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer’s disease. J Neurosci 34(45):14919–14933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sarkar S, Jun S, Rellick S, Quintana D, Cavendish J, Simpkins J (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song Y, Hu M, Zhang J, Teng Z-q, Chen C (2019) A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. EBioMedicine 39:409–21

    Article  PubMed  Google Scholar 

  119. Qian Q, Zhang J, He F-P, Bao W-X, Zheng T-T, Zhou D-M, et al (2019) Down-regulated expression of microRNA-338–5p contributes to neuropathology in Alzheimer’s disease. FASEB J fj. 201801846R

  120. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283

    Article  CAS  PubMed  Google Scholar 

  121. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci 109(46):18962–18967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W et al (2015) The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 18(7):1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cohen JE, Lee PR, Chen S, Li W, Fields RD (2011) MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci 108(28):11650–11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H et al (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72(2):269–277

    Article  CAS  PubMed  Google Scholar 

  125. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30(20):4299–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fiore R, Rajman M, Schwale C, Bicker S, Antoniou A, Bruehl C et al (2014) MiR-134-dependent regulation of Pumilio-2 is necessary for homeostatic synaptic depression. EMBO J 33(19):2231–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Edbauer D, Neilson JR, Foster KA, Wang C-F, Seeburg DP, Batterton MN et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mollinari C, Racaniello M, Berry A, Pieri M, De Stefano M, Cardinale A et al (2015) miR-34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death Dis 6(1):e1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33(4):1734–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Corbel C, Hernandez I, Wu B, Kosik KS (2015) Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev 10(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chai S, Cambronne XA, Eichhorn SW, Goodman RH (2013) MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9. Proc Natl Acad Sci 110(44):17898–17903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu W, Wu J, Huang J, Zhuo P, Lin Y, Wang L et al (2017) Electroacupuncture regulates hippocampal synaptic plasticity via miR-134-mediated LIMK1 function in rats with ischemic stroke. Neural Plast 2017

  133. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M et al (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11(6):705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D et al (2014) MicroRNA-9 controls dendritic development by targeting REST. Elife 3:e02755

    Article  PubMed Central  Google Scholar 

  135. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O et al (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42(5):673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kye MJ, Neveu P, Lee Y-S, Zhou M, Steen JA, Sahin M et al (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE 6(9):e24682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A et al (2016) The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 7:12594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry 3(8):760–773

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bali P, Kenny PJ (2013) MicroRNAs and drug addiction. Front Genet 4:1–8

    Article  CAS  Google Scholar 

  140. Dreyer J-L (2010) New insights into the roles of microRNAs in drug addiction and neuroplasticity. Genome medicine 2(12):1–7

    Article  CAS  Google Scholar 

  141. Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G et al (2021) Role of microRNAs in the pathophysiology of addiction. Wiley Interdiscip Rev: RNA 12(3):e1637

    CAS  PubMed  Google Scholar 

  142. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–4

    Article  CAS  PubMed  Google Scholar 

  143. Niwa R, Zhou F, Li C, Slack FJ (2008) The expression of the Alzheimer’s amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315(2):418–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Freeman WM, Nader MA, Nader SH, Robertson DJ, Gioia L, Mitchell SM et al (2001) Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J Neurochem 77(2):542–549

    Article  CAS  PubMed  Google Scholar 

  145. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17(8):1156–1168

    Article  CAS  PubMed  Google Scholar 

  146. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC et al (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11(1):35–42

    Article  CAS  PubMed  Google Scholar 

  147. Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci 99(13):9026–9030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim J, Im H-I, Moon C (2018) Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain. Neural Regen Res 13(1):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. He Y, Yang C, Kirkmire CM, Wang ZJ (2010) Regulation of opioid tolerance by let-7 family microRNA targeting the μ opioid receptor. J Neurosci 30(30):10251–10258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Smith A, Kenny P (2018) MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav 17(3):e12424

    Article  CAS  PubMed  Google Scholar 

  151. Hu G, Liao K, Niu F, Yang L, Dallon BW, Callen S et al (2018) Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration. Mol Ther-Nucleic Acids 13:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu J, Gao M, Taylor DH (2014) Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Acta Pharmacol Sin 35(3):311–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM et al (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59(2):274–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tapocik JD, Barbier E, Flanigan M, Solomon M, Pincus A, Pilling A et al (2014) microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J Neurosci 34(13):4581–4588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tang Y, Banan A, Forsyth CB, Fields JZ, Lau CK, Zhang LJ et al (2008) Effect of alcohol on miR‐212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 32(2):355–64

  156. Mamdani M, Williamson V, McMichael GO, Blevins T, Aliev F, Adkins A et al (2015) Integrating mRNA and miRNA weighted gene co-expression networks with eQTLs in the nucleus accumbens of subjects with alcohol dependence. PLoS ONE 10(9):e0137671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Nunez YO, Truitt JM, Gorini G, Ponomareva ON, Blednov YA, Harris RA et al (2013) Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics 14(1):1–21

    Article  CAS  Google Scholar 

  158. Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol psychiatry 65(8):702-

  159. Feltmann K, Borroto‐Escuela DO, Rüegg J, Pinton L, de Oliveira Sergio T, Narváez M et al (2018) Effects of long‐term alcohol drinking on the dopamine D2 receptor: Gene expression and heteroreceptor complexes in the striatum in rats. Alcohol Clin Exp Res 42(2):338–51

  160. Shi S, Leites C, He D, Schwartz D, Moy W, Shi J et al (2014) MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J Biol Chem 289(19):13434–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bahi A, Dreyer JL (2013) Striatal modulation of BDNF expression using micro RNA 124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. Eur J Neurosci 38(2):2328–2337

    Article  PubMed  Google Scholar 

  162. Tseng AM, Chung DD, Pinson MR, Salem NA, Eaves SE, Miranda RC (2019) Ethanol exposure increases miR-140 in extracellular vesicles: Implications for fetal neural stem cell proliferation and maturation. Alcohol Clin Exp Res 43(7):1414–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gardiner AS, Gutierrez HL, Luo L, Davies S, Savage DD, Bakhireva LN et al (2016) Alcohol Use During Pregnancy is Associated with Specific Alterations in Micro RNA Levels in Maternal Serum. Alcohol Clin Exp Res 40(4):826–37

  164. Tal TL, Tanguay RL (2012) Non-coding RNAs—novel targets in neurotoxicity. Neurotoxicology 33(3):530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dhar M, Zhu M, Impey S, Lambert TJ, Bland T, Karatsoreos IN et al (2014) Leptin induces hippocampal synaptogenesis via CREB-regulated microRNA-132 suppression of p250GAP. Mol Endocrinol 28(7):1073–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Fiumara F, Rajasethupathy P, Antonov I, Kosmidis S, Sossin WS, Kandel ER (2015) MicroRNA-22 gates long-term heterosynaptic plasticity in Aplysia through presynaptic regulation of CPEB and downstream targets. Cell Rep 11(12):1866–1875

    Article  CAS  PubMed  Google Scholar 

  167. Saba R, Störchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD et al (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32(3):619–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sadakierska-Chudy A, Frankowska M, Miszkiel J, Wydra K, Jastrzębska J, Filip M (2017) Prolonged induction of miR-212/132 and REST expression in rat striatum following cocaine self-administration. Mol Neurobiol 54(3):2241–2254

    Article  CAS  PubMed  Google Scholar 

  169. Yu D, Liu T, Qiu H, Zhou M (2018) Protective against ischemia-reperfusion injury of rat hippocampal neurons and expression of GluR2/NR2B by dexmedetomidine by inhibition miR-199a-SIRT1 signal pathway. Int J Clin Exp Med 11(10):10605–10613

    CAS  Google Scholar 

  170. Bastle RM, Oliver RJ, Gardiner AS, Pentkowski NS, Bolognani F, Allan AM et al (2018) In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 23(2):434–443

    Article  CAS  PubMed  Google Scholar 

  171. Shen J, Xu L, Qu C, Sun H, Zhang J (2018) Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res 349:1–7

    Article  CAS  PubMed  Google Scholar 

  172. Zhao Y-N, Li W-F, Li F, Zhang Z, Dai Y-D, Xu A-L et al (2013) Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun 435(4):597–602

    Article  CAS  PubMed  Google Scholar 

  173. Yan B, Hu Z, Yao W, Le Q, Xu B, Liu X et al (2017) MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Sci Rep 7:40413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tan Z, Chen Y, Xie W, Liu X, Zhu Y, Zhu Y (2018) Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur J Pharmacol 819:1–8

    Article  CAS  PubMed  Google Scholar 

  175. Wang X, Wang Z-H, Wu Y-Y, Tang H, Tan L, Wang X et al (2013) Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 47(1):373–381

    Article  CAS  PubMed  Google Scholar 

  176. Chen T, Yang Y-J, Li Y-K, Liu J, Wu P-F, Wang F et al (2016) Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo. J Ethnopharmacol 190:74–82

    Article  CAS  PubMed  Google Scholar 

  177. Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D (2015) MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry 20(10):1219

    CAS  PubMed  Google Scholar 

  178. Li W, He Q-z, Wu C-q, Pan X-y, Wang J, Tan Y et al (2015) PFOS disturbs BDNF-ERK-CREB signalling in association with increased MicroRNA-22 in SH-SY5Y cells. BioMed Res Int 2015

  179. Laferriere NR, Kurata WE, Grayson CT III, Stecklow KM, Pierce LM (2019) Inhibition of microRNA-124-3p as a novel therapeutic strategy for the treatment of Gulf War Illness: Evaluation in a rat model. Neurotoxicology 71:16–30

    Article  CAS  PubMed  Google Scholar 

  180. Prins SA, Przybycien-Szymanska MM, Rao YS, Pak TR (2014) Long-term effects of peripubertal binge EtOH exposure on hippocampal microRNA expression in the rat. PLoS ONE 9(1):e83166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Letellier M, Elramah S, Mondin M, Soula A, Penn A, Choquet D et al (2014) miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci 17(8):1040

    Article  CAS  PubMed  Google Scholar 

  182. Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR et al (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38(6):987–996

    Article  CAS  PubMed  Google Scholar 

  183. Horio Y, Hayashi T, Kuno A, Kunimoto R (2011) Cellular and molecular effects of sirtuins in health and disease. Clin Sci 121(5):191–203

    Article  CAS  Google Scholar 

  184. Donmez G, Outeiro T (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ruosi C, Colella G, Fazioli F, Miceli R, Gallo M, Di Salvatore MG et al (2017) Yin Yang I as an epimodulator of miRNAs in the metastatic cascade. Critical Reviews™ in Oncogenesis 22(1–2)

  186. Wang X, Xie Y, Zhang T, Bo S, Bai X, Liu H et al (2016) Resveratrol reverses chronic restraint stress-induced depression-like behaviour: involvement of BDNF level, ERK phosphorylation and expression of Bcl-2 and Bax in rats. Brain Res Bull 125:134–143

    Article  CAS  PubMed  Google Scholar 

  187. Miura P, Amirouche A, Clow C, Bélanger G, Jasmin BJ (2012) Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem 120(2):230–238

    Article  CAS  PubMed  Google Scholar 

  188. Messaoudi E, Ying S-W, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22(17):7453–7461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B et al (2010) The Arc of synaptic memory. Exp Brain Res 200(2):125–140

    Article  PubMed  Google Scholar 

  190. Grimm JW, Lu L, Hayashi T, Hope BT, Su T-P, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23(3):742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Alireza Javan for his valuable supportive contribution to this publication.

Funding

MRH was supported by US NIH Grants R01AI050875 and R21AI121700.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ameneh Jafari or Hamed Mirzaei.

Ethics declarations

Ethics Approval

Not applicable.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; Hologenix Inc. Santa Monica, CA; Vielight, Toronto, Canada; JOOVV Inc, Minneapolis-St. Paul MN; Consulting; USHIO Corp, Japan; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Other authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A.H., Seyedmoalemi, S., Moghanlou, M. et al. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 59, 5084–5102 (2022). https://doi.org/10.1007/s12035-022-02907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02907-2

Keywords

Navigation