Skip to main content

Advertisement

Log in

Involvement of Paired Immunoglobulin-like Receptor B in Diabetes-Associated Cognitive Dysfunction Through Modulation of Axon Outgrowth and Dendritic Remodeling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Type 2 diabetic patients have high risk of developing cognitive dysfunction, in which neural structural plasticity has played a pivotal role. Paired immunoglobulin-like receptor B (PirB), a receptor mainly expressed in neurons, acts as a critical inhibitor of neurite outgrowth and neural plasticity. However, the role of PirB in type 2 diabetes-associated cognitive dysfunction remains unknown. In this study, learning and memory impairment was observed in 24-week-old db/db mice by performing Morris water maze task, and the number of synapses along with the length of postsynaptic density by transmission electron microscopy were reduced in the hippocampus of db/db mice. Furthermore, PirB expression in the hippocampus of db/db mice was significantly upregulated using western blotting and immunofluorescence analysis. In cultured hippocampal neurons, high glucose treatment reduced the length of the longest neurite as well as axon initial segment (AIS), whereas silencing PirB expression rescued high glucose-induced neurite outgrowth inhibition, but not AIS. Additionally, cognitive deficits, dendrite morphology defects, and synapse-related proteins loss in db/db mice were alleviated when PirB knockdown was performed by adeno-associated virus injection. In conclusion, PirB is involved in diabetes-associated cognitive dysfunction through modulation of axon outgrowth and dendritic remodeling, providing a potential therapeutic target for diabetes-associated cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability (Software Application or Custom Code)

GraphPad Prism Version 8.0; Image J Version 1.51 J.

Abbreviations

PirB:

Paired immunoglobulin-like receptor B

AD:

Alzheimer’s disease

LTP:

Long-term potentiation

LTD:

Long-term depression

MWM:

Morris water maze

AAV:

Adeno-associated virus

RIPA:

Radioimmunoprecipitation assay

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene fluoride

PSD:

Postsynaptic density

AIS:

Axon initial segment

PSD95:

Postsynaptic density protein 95

MAP2:

Microtubule-associated protein 2

βIII-tubulin:

Class III beta-tubulin

Syp:

Synaptophysin

α1-NaKA:

α1 Subunit of Na + /K + -ATPase

GAP43:

Growth-associated protein-43

RhoA:

Ras homolog gene family member A

POSH:

Plenty of SH3s

References

  1. Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ (2020) Type 2 diabetes and cognitive dysfunction—towards effective management of both comorbidities. Lancet Diabetes Endocrinol 8(6):535–545. https://doi.org/10.1016/s2213-8587(20)30118-2

    Article  PubMed  Google Scholar 

  2. Pearson-Stuttard J, Bennett J, Cheng YJ, Vamos EP, Cross AJ, Ezzati M, Gregg EW (2021) Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 9(3):165–173. https://doi.org/10.1016/s2213-8587(20)30431-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14(10):591–604. https://doi.org/10.1038/s41574-018-0048-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  5. Bae JR, Kim SH (2017) Synapses in neurodegenerative diseases. BMB Rep 50(5):237–246. https://doi.org/10.5483/bmbrep.2017.50.5.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7(1):30–40. https://doi.org/10.1038/nrn1809

    Article  CAS  PubMed  Google Scholar 

  7. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19(10):951–961. https://doi.org/10.1002/hipo.20577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Liang L, Zhan L, Zhou Y, Zheng L, Sun X, Gong J, Sui H, Jiang R, Zhang F, Zhang L (2014) ZiBuPiYin recipe protects db/db mice from diabetes-associated cognitive decline through improving multiple pathological changes. PLoS ONE 9(3):e91680. https://doi.org/10.1371/journal.pone.0091680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ho N, Sommers MS, Lucki I (2013) Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev 37(8):1346–1362. https://doi.org/10.1016/j.neubiorev.2013.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11(3):309–317. https://doi.org/10.1038/nn2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549. https://doi.org/10.1016/s0166-2236(00)01656-8

    Article  CAS  PubMed  Google Scholar 

  12. Li X-L, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T (2002) Impairment of long-term potentiation and spatial memory in leptin receptor deficient rodents. Neuroscience 113(3):607–615. https://doi.org/10.1016/s0306-4522(02)00162-8

    Article  CAS  PubMed  Google Scholar 

  13. Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X (2014) PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 22(5):365–371. https://doi.org/10.3109/1061186X.2013.878939

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Wang Y, Fu W (2015) Axon regeneration impediment: the role of paired immunoglobulin-like receptor B. Neural Regen Res 10(8):1338–1342. https://doi.org/10.4103/1673-5374.162771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H, Djurisic M, Syken J, Dan Y, Shatz CJ (2014) Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Science Translational Medicine 6(258):258ra140. https://doi.org/10.1126/scitranslmed.3010157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djurisic M, Vidal GS, Mann M, Aharon A, Kim T, Ferrao Santos A, Zuo Y, Hubener M, Shatz CJ (2013) PirB regulates a structural substrate for cortical plasticity. Proc Natl Acad Sci U S A 110(51):20771–20776. https://doi.org/10.1073/pnas.1321092110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vidal GS, Djurisic M, Brown K, Sapp RW, Shatz CJ (2016) Cell-autonomous regulation of dendritic spine density by PirB. eNeuro 3 (5):ENEURO.0089-0016.2016. https://doi.org/10.1523/ENEURO.0089-16.2016

  18. Djurisic M, Brott BK, Saw NL, Shamloo M, Shatz CJ (2019) Activity-dependent modulation of hippocampal synaptic plasticity via PirB and endocannabinoids. Mol Psychiatry 24(8):1206–1219. https://doi.org/10.1038/s41380-018-0034-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim T, Vidal GS, Djurisic M, Williams CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ (2013) Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 341(6152):1399–1404. https://doi.org/10.1126/science.1242077

    Article  CAS  PubMed  Google Scholar 

  20. Deng B, Li L, Gou X, Xu H, Zhao Z, Wang Q, Xu L (2018) TAT-PEP enhanced neurobehavioral functional recovery by facilitating axonal regeneration and corticospinal tract projection after stroke. Mol Neurobiol 55(1):652–667. https://doi.org/10.1007/s12035-016-0301-9

    Article  CAS  PubMed  Google Scholar 

  21. Deng B, Bai F, Zhou H, Zhou D, Ma Z, Xiong L, Wang Q (2016) Electroacupuncture enhances rehabilitation through miR-181b targeting PirB after ischemic stroke. Scientific Reports 6:38997. https://doi.org/10.1038/srep38997

  22. Zhao ZH, Deng B, Xu H, Zhang JF, Mi YJ, Meng XZ, Gou XC, Xu LX (2017) PirB overexpression exacerbates neuronal apoptosis by inhibiting TrkB and mTOR phosphorylation after oxygen and glucose deprivation injury. Cell Mol Neurobiol 37(4):707–715. https://doi.org/10.1007/s10571-016-0406-8

    Article  CAS  PubMed  Google Scholar 

  23. Yermakov LM, Drouet DE, Griggs RB, Elased KM, Susuki K (2018) Type 2 diabetes leads to axon initial segment shortening in db/db mice. Front Cell Neurosci 12:146. https://doi.org/10.3389/fncel.2018.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yermakov LM, Griggs RB, Drouet DE, Sugimoto C, Williams MT, Vorhees CV, Susuki K (2019) Impairment of cognitive flexibility in type 2 diabetic db/db mice. Behav Brain Res 371:111978. https://doi.org/10.1016/j.bbr.2019.111978

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379(9833):2291–2299. https://doi.org/10.1016/s0140-6736(12)60360-2

    Article  Google Scholar 

  26. Ryan CM, van Duinkerken E, Rosano C (2016) Neurocognitive consequences of diabetes. Am Psychol 71(7):563–576. https://doi.org/10.1037/a0040455

    Article  PubMed  Google Scholar 

  27. Ramos-Rodriguez JJ, Ortiz O, Jimenez-Palomares M, Kay KR, Berrocoso E, Murillo-Carretero MI, Perdomo G, Spires-Jones T, Cozar-Castellano I, Lechuga-Sancho AM, Garcia-Alloza M (2013) Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 38(11):2462–2475. https://doi.org/10.1016/j.psyneuen.2013.05.010

    Article  PubMed  Google Scholar 

  28. Exalto LG, Biessels GJ, Karter AJ, Huang ES, Katon WJ, Minkoff JR, Whitmer RA (2013) Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol 1(3):183–190. https://doi.org/10.1016/s2213-8587(13)70048-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, Aichour MTE, Akinyemi RO, Alahdab F, Asgedom SW, Awasthi A, Barker-Collo SL, Baune BT, Béjot Y, Belachew AB, Bennett DA, Biadgo B, Bijani A, Bin Sayeed MS, Brayne C, Carpenter DO, Carvalho F, Catalá-López F, Cerin E, Choi J-YJ, Dang AK, Degefa MG, Djalalinia S, Dubey M, Duken EE, Edvardsson D, Endres M, Eskandarieh S, Faro A, Farzadfar F, Fereshtehnejad S-M, Fernandes E, Filip I, Fischer F, Gebre AK, Geremew D, Ghasemi-Kasman M, Gnedovskaya EV, Gupta R, Hachinski V, Hagos TB, Hamidi S, Hankey GJ, Haro JM, Hay SI, Irvani SSN, Jha RP, Jonas JB, Kalani R, Karch A, Kasaeian A, Khader YS, Khalil IA, Khan EA, Khanna T, Khoja TAM, Khubchandani J, Kisa A, Kissimova-Skarbek K, Kivimäki M, Koyanagi A, Krohn KJ, Logroscino G, Lorkowski S, Majdan M, Malekzadeh R, März W, Massano J, Mengistu G, Meretoja A, Mohammadi M, Mohammadi-Khanaposhtani M, Mokdad AH, Mondello S, Moradi G, Nagel G, Naghavi M, Naik G, Nguyen LH, Nguyen TH, Nirayo YL, Nixon MR, Ofori-Asenso R, Ogbo FA, Olagunju AT, Owolabi MO, Panda-Jonas S, Passos VMdA, Pereira DM, Pinilla-Monsalve GD, Piradov MA, Pond CD, Poustchi H, Qorbani M, Radfar A, Reiner RC, Robinson SR, Roshandel G, Rostami A, Russ TC, Sachdev PS, Safari H, Safiri S, Sahathevan R, Salimi Y, Satpathy M, Sawhney M, Saylan M, Sepanlou SG, Shafieesabet A, Shaikh MA, Sahraian MA, Shigematsu M, Shiri R, Shiue I, Silva JP, Smith M, Sobhani S, Stein DJ, Tabarés-Seisdedos R, Tovani-Palone MR, Tran BX, Tran TT, Tsegay AT, Ullah I, Venketasubramanian N, Vlassov V, Wang Y-P, Weiss J, Westerman R, Wijeratne T, Wyper GMA, Yano Y, Yimer EM, Yonemoto N, Yousefifard M, Zaidi Z, Zare Z, Vos T, Feigin VL, Murray CJL (2019) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 18(1):88–106. https://doi.org/10.1016/s1474-4422(18)30403-4

    Article  Google Scholar 

  30. Xiong Y, Zhang S, Shi J, Fan Y, Zhang Q, Zhu W (2019) Application of neurite orientation dispersion and density imaging to characterize brain microstructural abnormalities in type-2 diabetics with mild cognitive impairment. J Magn Reson Imaging 50(3):889–898. https://doi.org/10.1002/jmri.26687

    Article  PubMed  Google Scholar 

  31. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322(5903):967–970. https://doi.org/10.1126/science.1161151

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Ma C, Li H, Shen H, Li X, Fu X, Wu J, Chen G (2019) Nogo-A/Pir-B/TrkB signaling pathway activation inhibits neuronal survival and axonal regeneration after experimental intracerebral hemorrhage in rats. J Mol Neurosci 69(3):360–370. https://doi.org/10.1007/s12031-019-01365-1

    Article  CAS  PubMed  Google Scholar 

  33. Wang F, Cui H, Su Y, Zhao SG, Teng Y (2010) Expression change of PirB in mice retina after optic nerve injury. Mol Med Rep 3(3):405–407. https://doi.org/10.3892/mmr_00000272

    Article  CAS  PubMed  Google Scholar 

  34. Leterrier C (2018) The axon initial segment: an updated viewpoint. J Neurosci 38(9):2135–2145. https://doi.org/10.1523/JNEUROSCI.1922-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harty RC, Kim TH, Thomas EA, Cardamone L, Jones NC, Petrou S, Wimmer VC (2013) Axon initial segment structural plasticity in animal models of genetic and acquired epilepsy. Epilepsy Res 105(3):272–279. https://doi.org/10.1016/j.eplepsyres.2013.03.004

    Article  PubMed  Google Scholar 

  36. Nelson AD, Caballero-Floran RN, Rodriguez Diaz JC, Hull JM, Yuan Y, Li J, Chen K, Walder KK, Lopez-Santiago LF, Bennett V, McInnis MG, Isom LL, Wang C, Zhang M, Jones KS, Jenkins PM (2020) Ankyrin-G regulates forebrain connectivity and network synchronization via interaction with GABARAP. Mol Psychiatry 25(11):2800–2817. https://doi.org/10.1038/s41380-018-0308-x

    Article  CAS  PubMed  Google Scholar 

  37. Marin MA, Ziburkus J, Jankowsky J, Rasband MN (2016) Amyloid-beta plaques disrupt axon initial segments. Exp Neurol 281:93–98. https://doi.org/10.1016/j.expneurol.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rasband MN (2010) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11(8):552–562. https://doi.org/10.1038/nrn2852

    Article  CAS  PubMed  Google Scholar 

  39. Clark K, Sword BA, Dupree JL (2017) Oxidative stress induces disruption of the axon initial segment. ASN Neuro 9(6):1759091417745426. https://doi.org/10.1177/1759091417745426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang CY, Rasband MN (2018) Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 1420(1):46–61. https://doi.org/10.1111/nyas.13718

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465(7301):1070–1074. https://doi.org/10.1038/nature09160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dickson HM, Zurawski J, Zhang H, Turner DL, Vojtek AB (2010) POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J Neurosci 30(40):13319–13325. https://doi.org/10.1523/JNEUROSCI.1324-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujita Y, Endo S, Takai T, Yamashita T (2011) Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO J 30(7):1389–1401. https://doi.org/10.1038/emboj.2011.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Z-h, Deng B, Xu H, Zhang J-f, Mi Y-j, Meng X-z, Gou X-c, Xu L-x (2016) PirB overexpression exacerbates neuronal apoptosis by inhibiting TrkB and mTOR phosphorylation after oxygen and glucose deprivation injury. Cell Mol Neurobiol 37(4):707–715. https://doi.org/10.1007/s10571-016-0406-8

    Article  CAS  PubMed  Google Scholar 

  45. Bi YY, Quan Y (2018) PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 17(1):1093–1098. https://doi.org/10.3892/mmr.2017.7930

    Article  CAS  PubMed  Google Scholar 

  46. Lu XM, Mao M, Xiao L, Yu Y, He M, Zhao GY, Tang JJ, Feng S, Li S, He CM, Wang YT (2019) nucleic acid vaccine targeting Nogo-66 receptor and paired immunoglobulin-like receptor B as an immunotherapy strategy for spinal cord injury in rats. Neurotherapeutics 16(2):381–393. https://doi.org/10.1007/s13311-019-00718-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Z, Wang Z, Ling Z, Li Y, Pan J, Gao Q, Zhang J, Yan L, Zhang Z, Li J (2021) A screened PirB antagonist peptide antagonizes Aβ42-mediated inhibition of neurite outgrowth in vitro. Applied Microbiology and Biotechnology:105 (11):4649–4662. https://doi.org/10.1007/s00253-021-11363-2

  48. Ganguly K, Poo MM (2013) Activity-dependent neural plasticity from bench to bedside. Neuron 80(3):729–741. https://doi.org/10.1016/j.neuron.2013.10.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Xiaoli Qu from the State Key Laboratory for Manufacturing Systems Engineering of Xi’an Jiaotong University for her help on image acquisition.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81774113, 81974540, 81901237), Beijing, China.

National Natural Science Foundation of China,81774113,Qiang Wang,81974540,Qiang Wang,81901237,Qian Zhai

Author information

Authors and Affiliations

Authors

Contributions

Q.W., Q.Z., and K.R.P. conceptualized the study. K.R.P. and Q.Z. designed experiments and drafted the manuscript. K.R.P. performed experiments. M.Y.W., Y.X.Z., M.Y., and J.Y.S. assisted with experimental and execution. J.T. and H.L.M. were involved in data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Wang.

Ethics declarations

Ethics approval

Efforts were made to minimize animal suffering and to reduce the number of animals used. All animal experiments were approved by the Institutional Animal Care and Use Committees of Xi’an Jiaotong University (Xi’an, China; 2019–060) in accordance with the National Institutes of Health guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Q Z. and Q.W. contributed equally to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6384 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, K., Wu, M., Jiang, T. et al. Involvement of Paired Immunoglobulin-like Receptor B in Diabetes-Associated Cognitive Dysfunction Through Modulation of Axon Outgrowth and Dendritic Remodeling. Mol Neurobiol 59, 2563–2579 (2022). https://doi.org/10.1007/s12035-021-02679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02679-1

Keywords

Navigation