Skip to main content

Advertisement

Log in

Hemorrhage-Induced Sphingosine Kinase 1 Contributes to Ferroptosis-Mediated Secondary Brain Injury in Intracerebral Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The pathogenic processes of brain injury after intracerebral hemorrhage (ICH) have not yet been fully elucidated. Increasing evidence suggests that ferroptosis activation aggravates injury after ICH, but the underlying mechanism remains unclear. Sphingosine kinase 1 (Sphk1) is a key enzyme in the regulation of sphingosine metabolism involved in the ferroptosis pathway, but its role in ICH needs clarification. In this study, transcriptional changes in ICH patients were assessed by microarray data, exposing Sphk1 as a highly upregulated gene during ICH. Furthermore, Sphk1 chemical inhibitors and siRNA were used to inhibit ICH-induced Sphk1 upregulation in in vivo and in vitro models, showing that Sphk1 inhibition after protects against ferroptosis and attenuates secondary brain injury and cell death. Mechanistically, this study unveiled that sphingosine kinase 1/sphingosine 1-phosphate/extracellular-regulated protein kinases/phosphorylated extracellular-regulated protein kinases (Sphk1/S1p/ERK/p-ERK) pathway is responsible for regulation of ferroptosis leading to secondary brain injury and cell death following ICH. Collectively, this study demonstrates that ferroptosis is closely associated with ICH, and that Sphk1 has a critical role in this lethal process. These results suggest a novel unique and effective therapeutic approach for ICH prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

Code Availability

Not applicable.

References

  1. Hostettler IC, Seiffge DJ, Werring DJ (2019) Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Rev Neurother 19(7):679–694. https://doi.org/10.1080/14737175.2019.1623671

    Article  CAS  PubMed  Google Scholar 

  2. Sun L, Clarke R, Bennett D, Guo Y, Walters RG, Hill M, Parish S, Millwood IY, Bian Z, Chen Y, Yu C, Lv J, Collins R, Chen J, Peto R, Li L, Chen Z, China Kadoorie Biobank Collaborative G, International Steering C, International Co-ordinating Centre O, National Co-ordinating Centre B, Regional Co-ordinating C (2019) Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nat Med 25(4):569–574. https://doi.org/10.1038/s41591-019-0366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Casolla B, Moulin S, Kyheng M, Henon H, Labreuche J, Leys D, Bauters C, Cordonnier C (2019) Five-year risk of major ischemic and hemorrhagic events after intracerebral hemorrhage. Stroke 50(5):1100–1107. https://doi.org/10.1161/STROKEAHA.118.024449

    Article  PubMed  Google Scholar 

  4. Lioutas V, Beiser A, Aparicio H, Himali J, Selim M, Romero J, Seshadri S (2020) Assessment of incidence and risk factors of intracerebral hemorrhage among participants in the Framingham Heart Study between 1948 and 2016. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.1512

    Article  PubMed  PubMed Central  Google Scholar 

  5. Volbers B, Giede-Jeppe A, Gerner ST, Sembill JA, Kuramatsu JB, Lang S, Lucking H, Staykov D, Huttner HB (2018) Peak perihemorrhagic edema correlates with functional outcome in intracerebral hemorrhage. Neurology 90(12):e1005–e1012. https://doi.org/10.1212/WNL.0000000000005167

    Article  PubMed  Google Scholar 

  6. Wilkinson DA, Keep RF, Hua Y, Xi G (2018) Hematoma clearance as a therapeutic target in intracerebral hemorrhage: from macro to micro. J Cereb Blood Flow Metab 38(4):741–745. https://doi.org/10.1177/0271678X17753590

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lan X, Han X, Liu X, Wang J (2019) Inflammatory responses after intracerebral hemorrhage: from cellular function to therapeutic targets. J Cereb Blood Flow Metab 39(1):184–186. https://doi.org/10.1177/0271678X18805675

    Article  CAS  PubMed  Google Scholar 

  8. Yan J, Zuo G, Sherchan P, Huang L, Ocak U, Xu W, Travis ZD, Wang W, Zhang JH, Tang J (2020) CCR1 Activation promotes neuroinflammation through CCR1/TPR1/ERK1/2 signaling pathway after intracerebral hemorrhage in mice. Neurotherapeutics. https://doi.org/10.1007/s13311-019-00821-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bobinger T, Burkardt P, H BH, Manaenko A (2018) Programmed cell death after intracerebral hemorrhage. Curr Neuropharmacol 16(9):1267–1281. https://doi.org/10.2174/1570159X15666170602112851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen CW, Chen TY, Tsai KL, Lin CL, Yokoyama KK, Lee WS, Chiueh CC, Hsu C (2012) Inhibition of autophagy as a therapeutic strategy of iron-induced brain injury after hemorrhage. Autophagy 8(10):1510–1520. https://doi.org/10.4161/auto.21289

    Article  CAS  PubMed  Google Scholar 

  11. King MD, Whitaker-Lea WA, Campbell JM, Alleyne CH Jr, Dhandapani KM (2014) Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int J Cell Biol 2014:495817. https://doi.org/10.1155/2014/495817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu D, Tian Z, Yan Z, Wu L, Ma Y, Wang Q, Liu W, Zhou H, Yang C (2013) Design, synthesis and evaluation of 1,2-benzisothiazol-3-one derivatives as potent caspase-3 inhibitors. Bioorg Med Chem 21(11):2960–2967. https://doi.org/10.1016/j.bmc.2013.03.075

    Article  CAS  PubMed  Google Scholar 

  13. Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH (2018) Caspase inhibitors: a review of recently patented compounds (2013–2015). Expert Opin Ther Pat 28(1):47–59. https://doi.org/10.1080/13543776.2017.1378426

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J, Shi H (2020) Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-00850-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H, Gan B (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30(2):146–162. https://doi.org/10.1038/s41422-019-0263-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadian K, Stockwell BR (2020) SnapShot: ferroptosis. Cell 181(5):1188-1188 e1181. https://doi.org/10.1016/j.cell.2020.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Green DR (2019) The coming decade of cell death research: five riddles. Cell 177(5):1094–1107. https://doi.org/10.1016/j.cell.2019.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Z, Wu Y, Yuan S, Zhang P, Zhang J, Li H, Li X, Shen H, Wang Z, Chen G (2018) Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res 1701:112–125. https://doi.org/10.1016/j.brainres.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  19. Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang WJ, Du G (2019) The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol Ther 195:85–99. https://doi.org/10.1016/j.pharmthera.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  20. Di Pardo A, Maglione V (2018) The S1P axis: new exciting route for treating Huntington’s disease. Trends Pharmacol Sci 39(5):468–480. https://doi.org/10.1016/j.tips.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  21. Hadas Y, Vincek AS, Youssef E, Zak MM, Chepurko E, Sultana N, Sharkar MTK, Guo N, Komargodski R, Kurian AA, Kaur K, Magadum A, Fargnoli A, Katz MG, Hossain N, Kenigsberg E, Dubois NC, Schadt E, Hajjar R, Eliyahu E, Zangi L (2020) Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation 141(11):916–930. https://doi.org/10.1161/CIRCULATIONAHA.119.041882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pyne NJ, Pyne S (2013) Sphingosine 1-phosphate is a missing link between chronic inflammation and colon cancer. Cancer Cell 23(1):5–7. https://doi.org/10.1016/j.ccr.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  23. Jung ID, Lee JS, Kim YJ, Jeong YI, Lee CM, Lee MG, Ahn SC, Park YM (2007) Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase. Immunology 121(4):533–544. https://doi.org/10.1111/j.1365-2567.2007.02601.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–868. https://doi.org/10.1038/nature05859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peltier L, Bendavid C, Cavey T, Island ML, Doyard M, Leroyer P, Allain C, De Tayrac M, Ropert M, Loreal O, Guggenbuhl P (2018) Iron excess upregulates SPNS2 mRNA levels but reduces sphingosine-1-phosphate export in human osteoblastic MG-63 cells. Osteoporos Int 29(8):1905–1915. https://doi.org/10.1007/s00198-018-4531-8

    Article  CAS  PubMed  Google Scholar 

  26. Qiao H, Jiang T, Mu P, Chen X, Wen X, Hu Z, Tang S, Wen J, Deng Y (2020) Cell fate determined by the activation balance between PKR and SPHK1. Cell Death Differ. https://doi.org/10.1038/s41418-020-00608-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosell A, Vilalta A, Garcia-Berrocoso T, Fernandez-Cadenas I, Domingues-Montanari S, Cuadrado E, Delgado P, Ribo M, Martinez-Saez E, Ortega-Aznar A, Montaner J (2011) Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS ONE 6(2):e16750. https://doi.org/10.1371/journal.pone.0016750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R (2020) Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 1727:146514. https://doi.org/10.1016/j.brainres.2019.146514

    Article  CAS  PubMed  Google Scholar 

  29. Clark W, Gunion-Rinker L, Lessov N, Hazel K (1998) Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke 29(10):2136–2140. https://doi.org/10.1161/01.STR.29.10.2136

    Article  CAS  PubMed  Google Scholar 

  30. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste.Marie EJ, Hondal RJ, Mukherjee S, Cave JW, Sagdullaev BT, Karuppagounder SS, Ratan RR (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. https://doi.org/10.1016/j.cell.2019.03.032

    Article  PubMed  Google Scholar 

  31. Zhou Z, Xiang W, Jiang Y, Tian N, Wei Z, Wen X, Wang W, Liao W, Xia X, Li Q, Liao R (2020) Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. Eur J Pharmacol 874:172988. https://doi.org/10.1016/j.ejphar.2020.172988

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Jiang B (2020) Sphk1 promotes ulcerative colitis via activating JAK2/STAT3 signaling pathway. Hum Cell 33(1):57–66. https://doi.org/10.1007/s13577-019-00283-z

    Article  CAS  PubMed  Google Scholar 

  33. Li F, Wang J, Zhu Y, Liu L, Feng W, Shi W, Wang Q, Zhang Q, Chai L, Li M (2018) SphK1/S1P mediates PDGF-induced pulmonary arterial smooth muscle cell proliferation via miR-21/BMPRII/Id1 signaling pathway. Cell Physiol Biochem 51(1):487–500. https://doi.org/10.1159/000495243

    Article  CAS  PubMed  Google Scholar 

  34. Mayr L, Grabherr F, Schwärzler J, Reitmeier I, Sommer F, Gehmacher T, Niederreiter L, He G, Ruder B, Kunz K, Tymoszuk P, Hilbe R, Haschka D, Feistritzer C, Gerner R, Enrich B, Przysiecki N, Seifert M, Keller M, Oberhuber G, Sprung S, Ran Q, Koch R, Effenberger M, Tancevski I, Zoller H, Moschen A, Weiss G, Becker C, Rosenstiel P, Kaser A, Tilg H, Adolph T (2020) Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 11(1):1775. https://doi.org/10.1038/s41467-020-15646-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arner ESJ, Fradejas-Villar N, Schweizer U, Zischka H, FriedmannAngeli JP, Conrad M (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409-422 e421. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, Ying M, Koehler RC, Stockwell BR, Wang J (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):e90777. https://doi.org/10.1172/jci.insight.90777

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, Tian X (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. https://doi.org/10.1038/s41418-019-0299-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Chen F, Chen J, Chan S, He Y, Liu W, Zhang G (2020) Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel) 12 (1). https://doi.org/10.3390/cancers12010138

  39. Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L, Yang L (2019) HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res 9(4):730–739

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48(4):1033–1043. https://doi.org/10.1161/STROKEAHA.116.015609

    Article  PubMed  PubMed Central  Google Scholar 

  41. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN (2015) Targeting secondary injury in intracerebral haemorrhage—perihaematomal oedema. Nat Rev Neurol 11(2):111–122. https://doi.org/10.1038/nrneurol.2014.264

    Article  PubMed  Google Scholar 

  42. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y, Zhu LQ, Liu D (2020) Targeting miR-124/ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 19(11):e13235. https://doi.org/10.1111/acel.13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imai T, Iwata S, Hirayama T, Nagasawa H, Nakamura S, Shimazawa M, Hara H (2019) Intracellular Fe(2+) accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage. Sci Rep 9(1):6228. https://doi.org/10.1038/s41598-019-42370-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K, Wilkinson CM, Nadeau CA, Kumar A, Perry S, Pinto JT, Darley-Usmar V, Sanchez S, Milne GL, Pratico D, Holman TR, Carmichael ST, Coppola G, Colbourne F, Ratan RR (2018) N-Acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with PGE2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. https://doi.org/10.1002/ana.25356

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oskeritzian CA, Alvarez SE, Hait NC, Price MM, Milstien S, Spiegel S (2008) Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111(8):4193–4200. https://doi.org/10.1182/blood-2007-09-115451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olivera A, Eisner C, Kitamura Y, Dillahunt S, Allende L, Tuymetova G, Watford W, Meylan F, Diesner SC, Li L, Schnermann J, Proia RL, Rivera J (2010) Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J Clin Invest 120(5):1429–1440. https://doi.org/10.1172/JCI40659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song DD, Zhang TT, Chen JL, Xia YF, Qin ZH, Waeber C, Sheng R (2017) Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 8(7):e2912. https://doi.org/10.1038/cddis.2017.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yung LM, Wei Y, Qin T, Wang Y, Smith CD, Waeber C (2012) Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke 43(1):199–204. https://doi.org/10.1161/STROKEAHA.111.626911

    Article  CAS  PubMed  Google Scholar 

  50. Hasegawa Y, Suzuki H, Altay O, Rolland W, Zhang JH (2013) Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl Stroke Res 4(5):524–532. https://doi.org/10.1007/s12975-013-0260-7

    Article  CAS  PubMed  Google Scholar 

  51. Wacker BK, Park TS, Gidday JM (2009) Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 40(10):3342–3348. https://doi.org/10.1161/STROKEAHA.109.560714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng S, Wei S, Wang X, Xu Y, Xiao Y, Liu H, Jia J, Cheng J (2015) Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Exp Neurol 272:160–169. https://doi.org/10.1016/j.expneurol.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  53. Li Q, Wang C, Zhang Q, Tang C, Li N, Li J (2012) The role of sphingosine kinase 1 in patients with severe acute pancreatitis. Ann Surg 255(5):954–962. https://doi.org/10.1097/SLA.0b013e31824d2ca4

    Article  PubMed  Google Scholar 

  54. Ader I, Malavaud B, Cuvillier O (2009) When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 69(9):3723–3726. https://doi.org/10.1158/0008-5472.CAN-09-0389

    Article  CAS  PubMed  Google Scholar 

  55. Altay O, Suzuki H, Altay BN, Calisir V, Tang J, Zhang JH (2020) Isoflurane versus sevoflurane for early brain injury and expression of sphingosine kinase 1 after experimental subarachnoid hemorrhage. Neurosci Lett 733:135142. https://doi.org/10.1016/j.neulet.2020.135142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu SL, Huang CC, Tzeng TT, Liu SC, Tsai CH, Fong YC, Tang CH (2020) S1P promotes IL-6 expression in osteoblasts through the PI3K, MEK/ERK and NF-kappaB signaling pathways. Int J Med Sci 17(9):1207–1214. https://doi.org/10.7150/ijms.44612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. John Hugh Snyder (Genesis Technology Communication (Beijing), Co., Ltd.) for the linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by Grant Number 2018GXNSFBA138046 from the Youth Fund of the Guangxi Natural Science Foundation and the Guangxi Science and Technology Project (Grant Number Guike AD18281013). Grant Number 2020GXNSFAA259036, Grant Number 2017GXNSFBA198001, and Grant Number 2018GXNSFAA138110 were from the Fund of the Guangxi Natural Science Foundation. This work was also supported by the National Natural Science Foundation of China (No. 81760541).

Author information

Authors and Affiliations

Authors

Contributions

X.J.D. and Q.C. performed the experiments, analyzed the data, and wrote the paper. N.T. Z.X.Z., W.J.X., Y.L.J., J.G.D., and H.Z.L. contributed to some parts of the experiments. X.H.L. and Q.H.L. designed the experiment and provided advice on the interpretation of the data. R.J.L. conceived of and designed the experiment, analyzed and interpreted the data, provided financial support, and wrote the paper.

Corresponding authors

Correspondence to Qinghua Li or Rujia Liao.

Ethics declarations

Ethics Approval

All animal procedures were approved by the Guilin Medical University Animal Experimentation Committee (approval number GLMC201805008).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

The experimental design in this study

High resolution image (TIF 205 KB)

Fig. S2

Sphk1 inhibition reducing apoptosis after ICH. Representative images and quantification of the number of apoptotic cells at seven days after 5C administration in ICH model mice. The white arrows indicate typical apoptotic bodies. n = 4-6 per group. *p<0.05 and **p<0.01. Data are presented as mean ± S.E.M.

High resolution image (TIF 4817 KB)

Fig. S3

Sphk1 inhibition have no effect on autophagy process after ICH. Representative western blot bands and quantitative analyses of p62 and microtubule-associated protein light chain 3 (LC3)-II at seven days after 5C administration in ICH model mice. n = 3-4 per group. Data are presented as mean ± S.E.M.

High resolution image (TIF 424 KB)

Table S1

The primary antibodies and secondary antibodies used in this study (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Cui, Q., Tian, N. et al. Hemorrhage-Induced Sphingosine Kinase 1 Contributes to Ferroptosis-Mediated Secondary Brain Injury in Intracerebral Hemorrhage. Mol Neurobiol 59, 1381–1397 (2022). https://doi.org/10.1007/s12035-021-02605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02605-5

Keywords

Navigation