Skip to main content

Advertisement

Log in

Sex and Estrous Cycle Differences in Analgesia and Brain Oxycodone Levels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sex differences in opioid analgesia occur in rodents and humans, and could be due to differences in drug and metabolite levels. Thus, we investigated the sex and cycle differences in analgesia (nociception) from oxycodone in rats and related these to sex and cycle differences in brain and plasma oxycodone and metabolite levels. Since numerous opioids are CYP2D enzyme substrates and variation in CYP2D alters opioid drug levels and response, we also initiated studies to see if the sex and cycle differences observed might be due to differences in brain CYP2D activity. Across oxycodone doses, females in diestrus had higher analgesia (using tail flick latency) compared to males and females in estrus; we also demonstrated a direct effect of estrous cycle on analgesia within females. Consistent with the analgesia, females in diestrus had highest brain oxycodone levels (assessed using microdialysis) compared to males and females in estrus. Analgesia correlated with brain oxycodone, but not brain oxymorphone or noroxycodone levels, or plasma drug or metabolite levels. Propranolol (a CYP2D mechanism–based inhibitor), versus vehicle pre-treatments, increased brain oxycodone, and decreased brain oxymorphone/oxycodone drug level ratios (an in vivo CYP2D activity phenotype in the brain) in males and females in estrus, but not in females in diestrus. Brain oxymorphone/oxycodone inversely correlated with analgesia. Together, both sex and estrous cycle impact oxycodone analgesia and brain oxycodone levels, likely through regulation of brain CYP2D oxycodone metabolism. As CYP2D6 is expressed in human brain, perhaps similar sex and cycle influences also occur in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Supporting data and material can be found in the additional files and can be requested from the corresponding author.

Code Availability

Not applicable.

References

  1. Degenhardt L, Grebely J, Stone J, Hickman M, Vickerman P, Marshall BDL, Bruneau J, Altice FL et al (2019) Global patterns of opioid use and dependence: harms to populations, interventions, and future action. Lancet 394(10208):1560–1579. https://doi.org/10.1016/S0140-6736(19)32229-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilson N, Kariisa M, Seth P, Smith H, Davis NL (2020) Drug and opioid-involved overdose deaths - United States, 2017–2018. MMWR Morb Mortal Wkly Rep 69(11):290–297. https://doi.org/10.15585/mmwr.mm6911a4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Canada PHAo (2021) Opioids and stimulant-related harms in Canada. Ottawa

  4. Averitt DL, Eidson LN, Doyle HH, Murphy AZ (2019) Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology 44(1):155–165. https://doi.org/10.1038/s41386-018-0127-4

    Article  CAS  PubMed  Google Scholar 

  5. Bodnar RJ, Kest B (2010) Sex differences in opioid analgesia, hyperalgesia, tolerance and withdrawal: central mechanisms of action and roles of gonadal hormones. Horm Behav 58(1):72–81. https://doi.org/10.1016/j.yhbeh.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  6. Craft RM (2003) Sex differences in opioid analgesia: “from mouse to man.” Clin J Pain 19(3):175–186

    Article  Google Scholar 

  7. Chan S, Edwards SR, Wyse BD, Smith MT (2008) Sex differences in the pharmacokinetics, oxidative metabolism and oral bioavailability of oxycodone in the Sprague-Dawley rat. Clin Exp Pharmacol Physiol 35(3):295–302

    Article  CAS  Google Scholar 

  8. Lee CW, Ho IK (2013) Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors. Mol Pain 9:45. https://doi.org/10.1186/1744-8069-9-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Xie M, Wang X, Ouyang X, Wan Y, Dong G, Yang Z, Yang J, Yue J (2015) Sex hormones regulate cerebral drug metabolism via brain miRNAs: down-regulation of brain CYP2D by androgens reduces the analgesic effects of tramadol. Br J Pharmacol 172(19):4639–4654. https://doi.org/10.1111/bph.13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cepeda MS, Carr DB (2003) Women experience more pain and require more morphine than men to achieve a similar degree of analgesia. Anesth Analg 97(5):1464–1468. https://doi.org/10.1213/01.ane.0000080153.36643.83

    Article  PubMed  Google Scholar 

  11. Fillingim RB, Ness TJ, Glover TL, Campbell CM, Hastie BA, Price DD, Staud R (2005) Morphine responses and experimental pain: sex differences in side effects and cardiovascular responses but not analgesia. J Pain 6(2):116–124. https://doi.org/10.1016/j.jpain.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  12. Sarton E, Olofsen E, Romberg R, den Hartigh J, Kest B, Nieuwenhuijs D, Burm A, Teppema L et al (2000) Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology 93(5):1245–1254. https://doi.org/10.1097/00000542-200011000-00018 (discussion 1246A)

    Article  CAS  PubMed  Google Scholar 

  13. Cicero TJ, Nock B, Meyer ER (1996) Gender-related differences in the antinociceptive properties of morphine. J Pharmacol Exp Ther 279(2):767–773

    CAS  PubMed  Google Scholar 

  14. Kanarek RB, Homoleski B (2000) Modulation of morphine-induced antinociception by palatable solutions in male and female rats. Pharmacol Biochem Behav 66(3):653–659. https://doi.org/10.1016/s0091-3057(00)00251-3

    Article  CAS  PubMed  Google Scholar 

  15. Holtman JR, Wala EP (2006) Characterization of the antinociceptive effect of oxycodone in male and female rats. Pharmacol Biochem Behav 83(1):100–108. https://doi.org/10.1016/j.pbb.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  16. Peckham EM, Traynor JR (2006) Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague-Dawley rats. J Pharmacol Exp Ther 316(3):1195–1201. https://doi.org/10.1124/jpet.105.094276

    Article  CAS  PubMed  Google Scholar 

  17. Collins D, Reed B, Zhang Y, Kreek MJ (2016) Sex differences in responsiveness to the prescription opioid oxycodone in mice. Pharmacol Biochem Behav 148:99–105. https://doi.org/10.1016/j.pbb.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  18. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79(5):461–479. https://doi.org/10.1016/j.clpt.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Salmin SF, Giroux MC, Vachon P, Beaudry F (2017) In vitro metabolism of specific CYP2D and CYP3A opioid substrates using rat liver S9 fractions and mass spectrometry reveal a severe metabolic impairment with increasing age. Biomed Chromatogr 31 (2). doi:https://doi.org/10.1002/bmc.3786

  20. McMillan DM, Miksys S, Tyndale RF (2019) Rat brain CYP2D activity alters in vivo central oxycodone metabolism, levels and resulting analgesia. Addict Biol 24(2):228–238. https://doi.org/10.1111/adb.12590

    Article  CAS  PubMed  Google Scholar 

  21. Bostrom E, Simonsson US, Hammarlund-Udenaes M (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos 34(9):1624–1631. https://doi.org/10.1124/dmd.106.009746

    Article  CAS  PubMed  Google Scholar 

  22. Cora MC, Kooistra L, Travlos G (2015) Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43(6):776–793. https://doi.org/10.1177/0192623315570339

    Article  CAS  PubMed  Google Scholar 

  23. Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53(4):597–652

    PubMed  Google Scholar 

  24. McMillan DM, Tyndale RF (2015) Nicotine increases codeine analgesia through the induction of brain CYP2D and central activation of codeine to morphine. Neuropsychopharmacology 40(7):1804–1812. https://doi.org/10.1038/npp.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rowland K, Yeo WW, Ellis SW, Chadwick IG, Haq I, Lennard MS, Jackson PR, Ramsay LE et al (1994) Inhibition of CYP2D6 activity by treatment with propranolol and the role of 4-hydroxy propranolol. Br J Clin Pharmacol 38(1):9–14. https://doi.org/10.1111/j.1365-2125.1994.tb04315.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masubuchi Y, Narimatsu S, Hosokawa S, Suzuki T (1994) Role of the CYP2D subfamily in metabolism-dependent covalent binding of propranolol to liver microsomal protein in rats. Biochem Pharmacol 48(10):1891–1898. https://doi.org/10.1016/0006-2952(94)90587-8

    Article  CAS  PubMed  Google Scholar 

  27. Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF (2017) Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 78:140–148. https://doi.org/10.1016/j.pnpbp.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J (2015) Sex-dependent regulation of hepatic CYP3A by growth hormone: roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 93(1):92–103. https://doi.org/10.1016/j.bcp.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Waxman DJ, Ram PA, Pampori NA, Shapiro BH (1995) Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol Pharmacol 48(5):790–797

    CAS  PubMed  Google Scholar 

  30. De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M (2012) Morphine metabolism, transport and brain disposition. Metab Brain Dis 27(1):1–5. https://doi.org/10.1007/s11011-011-9274-6

    Article  CAS  PubMed  Google Scholar 

  31. Kaiko RF, Benziger DP, Fitzmartin RD, Burke BE, Reder RF, Goldenheim PD (1996) Pharmacokinetic-pharmacodynamic relationships of controlled-release oxycodone. Clin Pharmacol Ther 59(1):52–61. https://doi.org/10.1016/S0009-9236(96)90024-7

    Article  CAS  PubMed  Google Scholar 

  32. Cleary J, Mikus G, Somogyi A, Bochner F (1994) The influence of pharmacogenetics on opioid analgesia: studies with codeine and oxycodone in the Sprague-Dawley/Dark Agouti rat model. J Pharmacol Exp Ther 271(3):1528–1534

    CAS  PubMed  Google Scholar 

  33. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K (2010) Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 70(1):78–87. https://doi.org/10.1111/j.1365-2125.2010.03653.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klimas R, Witticke D, El Fallah S, Mikus G (2013) Contribution of oxycodone and its metabolites to the overall analgesic effect after oxycodone administration. Expert Opin Drug Metab Toxicol 9(5):517–528. https://doi.org/10.1517/17425255.2013.779669

    Article  CAS  PubMed  Google Scholar 

  35. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32(4):447–454. https://doi.org/10.1124/dmd.32.4.447

    Article  CAS  PubMed  Google Scholar 

  36. Sadiq MW, Boström E, Keizer R, Björkman S, Hammarlund-Udenaes M (2013) Oxymorphone active uptake at the blood-brain barrier and population modeling of its pharmacokinetic-pharmacodynamic relationship. J Pharm Sci 102(9):3320–3331. https://doi.org/10.1002/jps.23492

    Article  CAS  PubMed  Google Scholar 

  37. Grossman ML, Basbaum AI, Fields HL (1982) Afferent and efferent connections of the rat tail flick reflex (a model used to analyze pain control mechanisms). J Comp Neurol 206(1):9–16. https://doi.org/10.1002/cne.902060103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Bin Zhao for his invaluable technical assistance with the LC-MS analyses, Dr. Ahmed El-Sherbeni for assistance with MD calculations, and Fariba Baghai Wadji for her expert support with stereotaxic surgeries and microdialysis animal procedures.

Funding

This work was supported by the R01 grant from the National Institutes of Health (DA043526); Canada Research Chairs program (Dr. Tyndale, the Canada Research Chair in Pharmacogenomics), a Canadian Institutes of Health Research (Foundation Grant FDN-154294); the Centre for Addiction and Mental Health; and the CAMH Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.A., S.M, and R.F.T designed all the research experiments. N.A. did the stereotaxic surgeries and ran all the experiments. N.A. analyzed the data. N.A and R.F.T wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rachel F. Tyndale.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Experiments were performed in accordance with the NIH guidelines for the care and use of laboratory animals, and with approval of the University of Toronto Animal Care Committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

Dr. Rachel F Tyndale has consulted for Quinn Emanuel and Ethismos on topics unrelated to this current work. Nicole Arguelles and Dr. Sharon Miksys have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6098 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arguelles, N., Miksys, S. & Tyndale, R.F. Sex and Estrous Cycle Differences in Analgesia and Brain Oxycodone Levels. Mol Neurobiol 58, 6540–6551 (2021). https://doi.org/10.1007/s12035-021-02560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02560-1

Keywords

Navigation