Skip to main content

Advertisement

Log in

MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Irreversible neuron loss caused by central nervous system injuries usually leads to persistent neurological dysfunction. Reactive astrocytes, because of their high proliferative capacity, proximity to neuronal lineage, and significant involvement in glial scarring, are ideal starting cells for neuronal regeneration. Having previously identified several small molecules as important regulators of astrocyte-to-neuron reprogramming, we established herein that miR-124, ruxolitinib, SB203580, and forskolin could co-regulate rat cortical reactive astrocyte-to-neuron conversion. The induced cells had reduced astroglial properties, displayed typical neuronal morphologies, and expressed neuronal markers, reflecting 25.9% of cholinergic neurons and 22.3% of glutamatergic neurons. Gene analysis revealed that induced neuron gene expression patterns were more similar to that of primary neurons than of initial reactive astrocytes. On the molecular level, miR-124-driven neuronal differentiation of reactive astrocytes was via targeting of the SOX9-NFIA-HES1 axis to inhibit HES1 expression. In conclusion, we present a novel approach to inducing endogenous rat cortical reactive astrocytes into neurons through co-regulation involving miR-124 and three small molecules. Thus, our research has potential implications for inhibiting glial scar formation and promoting neuronal regeneration after central nervous system injury or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and Materials Availability

The datasets used and/or analysed during the current study are available from the corresponding author (Guangfan Chi, guangfan130@jlu.edu.cn) on reasonable request.

References

  1. Ouyang W, Yan Q, Zhang Y, Fan Z (2017) Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood. PLoS One 12(2):e0171976. https://doi.org/10.1371/journal.pone.0171976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhowmick S, D'Mello V, Ponery N, Abdul-Muneer PM (2018) Neurodegeneration and sensorimotor deficits in the mouse model of traumatic brain injury. Brain Sci 8(1). https://doi.org/10.3390/brainsci8010011

  3. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43. https://doi.org/10.1016/j.neures.2017.10.004

    Article  PubMed  Google Scholar 

  4. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, Zhao L (2018) Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol 31:2058738418801406. https://doi.org/10.1177/2058738418801406

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J et al (2017) The soft mechanical signature of glial scars in the central nervous system. Nat Commun 8:14787. https://doi.org/10.1038/ncomms14787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McMurran CE, Kodali S, Young A, Franklin RJ (2018) Clinical implications of myelin regeneration in the central nervous system. Expert Rev Neurother 18(2):111–123. https://doi.org/10.1080/14737175.2018.1421458

    Article  CAS  PubMed  Google Scholar 

  8. Tsunemoto R, Lee S, Szucs A, Chubukov P, Sokolova I, Blanchard JW, Eade KT, Bruggemann J et al (2018) Diverse reprogramming codes for neuronal identity. Nature 557(7705):375–380. https://doi.org/10.1038/s41586-018-0103-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanakov O, Gordleeva S, Ermolaeva A, Jalan S, Zaikin A (2019) Astrocyte-induced positive integrated information in neuron-astrocyte ensembles. Phys Rev E 99(1-1):012418. https://doi.org/10.1103/PhysRevE.99.012418

    Article  CAS  PubMed  Google Scholar 

  10. Farhy-Tselnicker I, Allen NJ (2018) Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 13(1):7. https://doi.org/10.1186/s13064-018-0104-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14(6):427–439. https://doi.org/10.1038/nrg3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Chen G (2016) In Vivo Reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91(4):728–738. https://doi.org/10.1016/j.neuron.2016.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heinrich C, Gotz M, Berninger B (2012) Reprogramming of postnatal astroglia of the mouse neocortex into functional, synapse-forming neurons. Methods Mol Biol 814:485–498. https://doi.org/10.1007/978-1-61779-452-0_32

    Article  CAS  PubMed  Google Scholar 

  14. Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338. https://doi.org/10.1038/ncomms4338

    Article  CAS  PubMed  Google Scholar 

  15. Lee C, Robinson M, Willerth SM (2018) Direct reprogramming of glioblastoma cells into neurons using small molecules. ACS Chem Neurosci 9(12):3175–3185. https://doi.org/10.1021/acschemneuro.8b00365

    Article  CAS  PubMed  Google Scholar 

  16. Gao L, Guan W, Wang M, Wang H, Yu J, Liu Q, Qiu B, Yu Y et al (2017) Direct generation of human neuronal cells from adult astrocytes by small molecules. Stem Cell Rep 8(3):538–547. https://doi.org/10.1016/j.stemcr.2017.01.014

    Article  CAS  Google Scholar 

  17. Yin JC, Zhang L, Ma NX, Wang Y, Lee G, Hou XY, Lei ZF, Zhang FY et al (2019) Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways. Stem Cell Rep 12(3):488–501. https://doi.org/10.1016/j.stemcr.2019.01.003

    Article  CAS  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  19. Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, Xing X, Li D et al (2017) MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblasts. Cell Stem Cell 21(3):332–348.e339. https://doi.org/10.1016/j.stem.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghasemi-Kasman M, Shojaei A, Gol M, Moghadamnia AA, Baharvand H, Javan M (2018) miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer's disease. Mol Cell Neurosci 86:50–57. https://doi.org/10.1016/j.mcn.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  21. Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T (2007) RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 1131 (1):37-43. doi:https://doi.org/10.1016/j.brainres.2006.11.035

  22. Sun Y, Luo ZM, Guo XM, Su DF, Liu X (2015) An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 9:193. https://doi.org/10.3389/fncel.2015.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiao S, Liu Y, Yao Y, Teng J (2018) miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/beta-catenin pathways. Mol Cell Biochem 449(1-2):305–314. https://doi.org/10.1007/s11010-018-3367-z

    Article  CAS  PubMed  Google Scholar 

  24. Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G et al (2016) miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3beta pathway by targeting Rap2a. Sci Rep 6:26781. https://doi.org/10.1038/srep26781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 7:278–287. https://doi.org/10.1016/j.omtn.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231. https://doi.org/10.1038/nature10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. https://doi.org/10.1038/nature03315

    Article  CAS  PubMed  Google Scholar 

  28. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B et al (2020) Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates symptoms of neurological disease in mice. Cell 181(3):590–603.e516. https://doi.org/10.1016/j.cell.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  29. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y et al (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582(7813):550–556. https://doi.org/10.1038/s41586-020-2388-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mokabber H, Najafzadeh N, Mohammadzadeh Vardin M (2019) miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9. J Cell Physiol 234(6):8941–8950. https://doi.org/10.1002/jcp.27563

    Article  CAS  PubMed  Google Scholar 

  31. Lee HS, Lee SH, Cha JH, Seo JH, Ahn BJ, Kim KW (2015) Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis. Mol Med Rep 12(2):1817–1823. https://doi.org/10.3892/mmr.2015.3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gascón S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18(3):396–409. https://doi.org/10.1016/j.stem.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  33. Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. https://doi.org/10.1038/ncomms3183

    Article  CAS  PubMed  Google Scholar 

  34. You T, Bi Y, Li J, Zhang M, Chen X, Zhang K, Li J (2017) IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci Rep 7:41779. https://doi.org/10.1038/srep41779

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li T, Xu R, Xia H, Hu X, Wang S, Li Y, Yan Y, Xia Y (2020) ASK1 phosphorylation regulates astrocytic reactive gliosis in vitro and in vivo. Neurosci Lett 716:134675. https://doi.org/10.1016/j.neulet.2019.134675

    Article  CAS  PubMed  Google Scholar 

  36. Koito H, Li J (2009) Preparation of rat brain aggregate cultures for neuron and glia development studies. J Vis Exp 31. https://doi.org/10.3791/1304

  37. Xu SY, Wu YM, Ji Z, Gao XY, Pan SY (2012) A modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol 2012:803930–803937. https://doi.org/10.1155/2012/803930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu J, Lv S, Hou Y, Xu K, Sun D, Zheng Y, Zhang Z, Li X et al (2018) miR-27b promotes type II collagen expression by targetting peroxisome proliferator-activated receptor-γ2 during rat articular chondrocyte differentiation. Biosci Rep 38(1). https://doi.org/10.1042/bsr20171109

  39. Ma K, Deng X, Xia X, Fan Z, Qi X, Wang Y, Li Y, Ma Y et al (2018) Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl Neurodegener 7:29. https://doi.org/10.1186/s40035-018-0132-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45, 45e–e445. https://doi.org/10.1093/nar/29.9.e45

  41. Wang CY, Yang SH, Tzeng SF (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63(2):194–205. https://doi.org/10.1002/glia.22743

    Article  PubMed  Google Scholar 

  42. Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G et al (2015) A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation. Aging Cell 14(5):784–796. https://doi.org/10.1111/acel.12356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hernández-Montiel W, Collí-Dula RC, Ramón-Ugalde JP, Martínez-Núñez MA, Zamora-Bustillos R (2019) RNA-seq transcriptome analysis in ovarian tissue of Pelibuey breed to explore the regulation of prolificacy. Genes 10(5). https://doi.org/10.3390/genes10050358

  44. Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE et al (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74(1):79–94. https://doi.org/10.1016/j.neuron.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F et al (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J Neurosci 35(6):2817–2829. https://doi.org/10.1523/jneurosci.3516-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roy Choudhury G, Ryou MG, Poteet E, Wen Y, He R, Sun F, Yuan F, Jin K et al (2014) Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res 1551:45–58. https://doi.org/10.1016/j.brainres.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  47. Jia M, Shi Z, Yan X, Xu L, Dong L, Li J, Wang Y, Yang S et al (2018) Insulin and heparin-binding epidermal growth factor-like growth factor synergistically promote astrocyte survival and proliferation in serum-free medium. J Neurosci Methods 307:240–247. https://doi.org/10.1016/j.jneumeth.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  48. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477. https://doi.org/10.1111/j.1460-9568.2005.03978.x

    Article  PubMed  Google Scholar 

  49. Ochi S, Imaizumi Y, Shimojo H, Miyachi H, Kageyama R (2020) Oscillatory expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development 147(4):dev182204. https://doi.org/10.1242/dev.182204

    Article  CAS  PubMed  Google Scholar 

  50. Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H et al (2018) Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 145(1):51–67. https://doi.org/10.1111/jnc.14229

    Article  CAS  PubMed  Google Scholar 

  51. Piper M, Barry G, Hawkins J, Mason S, Lindwall C, Little E, Sarkar A, Smith AG et al (2010) NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1. J Neurosci 30(27):9127–9139. https://doi.org/10.1523/jneurosci.6167-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao DD, Li L, Chan WY (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 17(6). https://doi.org/10.3390/ijms17060842

  53. Kutsche LK, Gysi DM, Fallmann J, Lenk K, Petri R, Swiersy A, Klapper SD, Pircs K et al (2018) Combined experimental and system-level analyses reveal the complex regulatory network of miR-124 during human neurogenesis. Cell Syst 7(4):438–452.e438. https://doi.org/10.1016/j.cels.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akerblom M, Sachdeva R, Barde I, Verp S, Gentner B, Trono D, Jakobsson J (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32(26):8879–8889. https://doi.org/10.1523/jneurosci.0558-12.2012

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. Ann Med 40(3):197–208. https://doi.org/10.1080/07853890701771823

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Z, Gong Q, Li M, Xu J, Zheng Y, Ge P, Chi G (2017) MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. Int J Mol Med 40(4):1226–1234. https://doi.org/10.3892/ijmm.2017.3088

    Article  CAS  PubMed  Google Scholar 

  57. Zu L, Xue Y, Wang J, Fu Y, Wang X, Xiao G, Hao M, Sun X et al (2016) The feedback loop between miR-124 and TGF-beta pathway plays a significant role in non-small cell lung cancer metastasis. Carcinogenesis 37(3):333–343. https://doi.org/10.1093/carcin/bgw011

    Article  CAS  PubMed  Google Scholar 

  58. Jiao S, Liu Y, Yao Y, Teng J (2018) miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways. Mol Cell Biochem 449(1-2):305–314. https://doi.org/10.1007/s11010-018-3367-z

    Article  CAS  PubMed  Google Scholar 

  59. Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T, Yang D (2019) MiR-124 regulates transforming growth factor-beta1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/beta-catenin signaling. Dev Biol 449(2):115–121. https://doi.org/10.1016/j.ydbio.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  60. Tapia VS, Herrera-Rojas M, Larrain J (2017) JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. Regeneration (Oxf) 4(1):21–35. https://doi.org/10.1002/reg2.74

    Article  CAS  Google Scholar 

  61. Kim YH, Chung JI, Woo HG, Jung YS, Lee SH, Moon CH, Suh-Kim H, Baik EJ (2010) Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway. Stem Cells 28(10):1816–1828. https://doi.org/10.1002/stem.511

    Article  CAS  PubMed  Google Scholar 

  62. Cao F, Hata R, Zhu P, Nakashiro K, Sakanaka M (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394(3):843–847. https://doi.org/10.1016/j.bbrc.2010.03.092

    Article  CAS  PubMed  Google Scholar 

  63. Cheon SY, Cho KJ, Song J, Kim GW (2016) Knockdown of apoptosis signal-regulating kinase 1 affects ischaemia-induced astrocyte activation and glial scar formation. Eur J Neurosci 43(7):912–922. https://doi.org/10.1111/ejn.13175

    Article  PubMed  Google Scholar 

  64. Smith DK, Yang J, Liu ML, Zhang CL (2016) Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7(5):955–969. https://doi.org/10.1016/j.stemcr.2016.09.013

    Article  CAS  Google Scholar 

  65. Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18(3):396–409. https://doi.org/10.1016/j.stem.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  66. Roese-Koerner B, Stappert L, Brustle O (2017) Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. Neurogenesis (Austin, Tex) 4(1):e1313647. https://doi.org/10.1080/23262133.2017.1313647

    Article  CAS  Google Scholar 

  67. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisen J (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346(6206):237–241. https://doi.org/10.1126/science.346.6206.237

    Article  CAS  PubMed  Google Scholar 

  68. Sueda R, Imayoshi I, Harima Y, Kageyama R (2019) High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev 33(9-10):511–523. https://doi.org/10.1101/gad.323196.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, Rao Z, Zhao W et al (2015) Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. J Neurosci 35(25):9336–9355. https://doi.org/10.1523/jneurosci.3975-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boareto M, Iber D, Taylor V (2017) Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development 144(19):3465–3474. https://doi.org/10.1242/dev.152520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82(1):9–23. https://doi.org/10.1016/j.neuron.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  72. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306(2):343–348. https://doi.org/10.1016/j.yexcr.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  73. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L et al (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. https://doi.org/10.1016/j.stem.2015.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cargnin F, Kwon JS, Katzman S, Chen B, Lee JW, Lee SK (2018) FOXG1 orchestrates neocortical organization and cortico-cortical connections. Neuron 100 (5):1083-1096.e1085. https://doi.org/10.1016/j.neuron.2018.10.016

  75. Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X et al (2017) Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 544(7649):245–249. https://doi.org/10.1038/nature21722

    Article  CAS  PubMed  Google Scholar 

  76. Matsushita F, Kameyama T, Kadokawa Y, Marunouchi T (2014) Spatiotemporal expression pattern of Myt/NZF family zinc finger transcription factors during mouse nervous system development. Dev Dyn 243(4):588–600. https://doi.org/10.1002/dvdy.24091

    Article  CAS  PubMed  Google Scholar 

  77. Pepeu G, Grazia Giovannini M (2017) The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 1670:173–184. https://doi.org/10.1016/j.brainres.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  78. Douchamps V, Mathis C (2017) A second wind for the cholinergic system in Alzheimer's therapy. Behav Pharmacol 28(2 and 3-Spec Issue):112–123. https://doi.org/10.1097/fbp.0000000000000300

    Article  CAS  PubMed  Google Scholar 

  79. Liang XG, Tan C, Wang CK, Tao RR, Huang YJ, Ma KF, Fukunaga K, Huang MZ et al (2018) Myt1l induced direct reprogramming of pericytes into cholinergic neurons. CNS Neurosci Ther 24(9):801–809. https://doi.org/10.1111/cns.12821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR (2016) The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol Dis 92(Pt B):137–143. https://doi.org/10.1016/j.nbd.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shanghai Sangon Biotech Co., Ltd., for RNA-seq analysis and Guangzhou RiboBio Co., Ltd., for designing the miR mimics and si-RNA. We also thank Editage for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers 81571199 and 81870974) and the Fundamental Research Funds for the Central Universities, JLU. The funding body had no role in the design of the study, the collection, analysis and interpretation of data and in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GC, CQ and YL conceived the study, designed the experiments, and together with YZ revised the manuscript. YZ performed the cellular and molecular experiments in vitro, with help from ZH and JX. KH, YY, SL and LC provided reagents and conducted the data analysis and interpretation. YZ wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yulin Li, Chengshi Quan or Guangfan Chi.

Ethics declarations

Ethics Approval

The animal study has been reviewed and approved by the Ethics Committee of Jilin University (Ethical approval code: 2015-19).

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 154 kb)

ESM 2

(PDF 192 kb)

ESM 3

(PDF 160 kb)

ESM 4

(PDF 240 kb)

ESM 5

(PDF 242 kb)

ESM 6

(PDF 531 kb)

ESM 7

(PDF 639 kb)

ESM 8

(PDF 483 kb)

ESM 9

(PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Huang, Z., Xu, J. et al. MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes. Mol Neurobiol 58, 2447–2464 (2021). https://doi.org/10.1007/s12035-021-02345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02345-6

Keywords

Navigation