Skip to main content

Advertisement

Log in

Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lambertsen KL, Finsen B, Clausen BH (2019) Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 137(5):693–714. https://doi.org/10.1007/s00401-018-1930-z

    Article  PubMed  Google Scholar 

  2. McCauley ME, Baloh RH (2019) Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 137(5):715–730. https://doi.org/10.1007/s00401-018-1933-9

    Article  CAS  PubMed  Google Scholar 

  3. Iciar Gárate BG-B, Madrigal JLM, Bravo L, Berrocoso E, Caso JR, Micó JA, Leza J (2011) Origin and consequences of brain TLR4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8(151):1–14

    Google Scholar 

  4. Milich LM, Ryan CB, Lee JK (2019) The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 137(5):785–797. https://doi.org/10.1007/s00401-019-01992-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28(5):639–647. https://doi.org/10.1016/j.neurobiolaging.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  7. Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediat Inflamm 2013:342931–342919. https://doi.org/10.1155/2013/342931

    Article  CAS  Google Scholar 

  8. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16(5):508–518. https://doi.org/10.2174/1570159X15666170720095240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268. https://doi.org/10.1155/2018/4784268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McManus RM, Heneka MT (2017) Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res Ther 9(1):14. https://doi.org/10.1186/s13195-017-0241-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008. https://doi.org/10.3389/fphar.2019.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJM, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239. https://doi.org/10.1002/glia.10146

    Article  CAS  PubMed  Google Scholar 

  13. Qiao X, Cummins DJ, Paul SM (2001) Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci 14(3):474–482. https://doi.org/10.1046/j.0953-816x.2001.01666.x

    Article  CAS  PubMed  Google Scholar 

  14. Meyer P-F, Tremblay-Mercier J, Leoutsakos J, Madjar C, Lafaille-Maignan M-É, Savard M, Rosa-Neto P, Poirier J et al (2019) INTREPAD. A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. 92(18):e2070–e2080. https://doi.org/10.1212/wnl.0000000000007232

  15. Broe GA, Grayson DA, Creasey HM, Waite LM, Casey BJ, Bennett HP, Brooks WS, Halliday GM (2000) Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol 57(11):1586–1591. https://doi.org/10.1001/archneur.57.11.1586

    Article  CAS  PubMed  Google Scholar 

  16. Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70(19):1672–1677. https://doi.org/10.1212/01.wnl.0000311269.57716.63

    Article  CAS  PubMed  Google Scholar 

  17. Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632. https://doi.org/10.1212/wnl.48.3.626

    Article  CAS  PubMed  Google Scholar 

  18. Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG, Weiner MF, Farlow MR et al (2000) A randomized controlled trial of prednisone in Alzheimer’s disease. Neurology 54(3):588–593. https://doi.org/10.1212/wnl.54.3.588

    Article  CAS  PubMed  Google Scholar 

  19. Alzheimer’s Disease Anti-inflammatory Prevention Trial Research G (2013) Results of a follow-up study to the randomized Alzheimer’s disease anti-inflammatory prevention trial (ADAPT). Alzheimer’s Dementia 9(6):714–723. https://doi.org/10.1016/j.jalz.2012.11.012

  20. Peng Y, Zhang X, Zhang T, Grace PM, Li H, Wang Y, Li H, Chen H et al (2019) Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain Behav Immun 82:432–444. https://doi.org/10.1016/j.bbi.2019.09.013

    Article  PubMed  Google Scholar 

  21. MacDowell KS, Caso JR, Martin-Hernandez D, Madrigal JL, Leza JC, Garcia-Bueno B (2014) Paliperidone prevents brain toll-like receptor 4 pathway activation and neuroinflammation in rat models of acute and chronic restraint stress. Int J Neuropsychopharmacol 18(3). https://doi.org/10.1093/ijnp/pyu070

  22. Rintaro Shimazu SA, Ogata H, Yoshinori Nagai KF, Miyake K, Kimoto AM (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189(11):1777–1782. https://doi.org/10.1084/jem.189.11.1777

    Article  PubMed Central  Google Scholar 

  23. Guangjie Duan JZ, Xu J, Liu Y (2014) Targeting myeloid differentiation 2 for treatment of sepsis. Front Biosci 19:904–915. https://doi.org/10.2741/4256

    Article  Google Scholar 

  24. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. https://doi.org/10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  25. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A et al (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3(7):667–672. https://doi.org/10.1038/ni809

    Article  CAS  PubMed  Google Scholar 

  26. Re F, Strominger JL (2003) Separate functional domains of human MD-2 mediate toll-like receptor 4-binding and lipopolysaccharide responsiveness. J Immunol 171(10):5272–5276. https://doi.org/10.4049/jimmunol.171.10.5272

    Article  CAS  PubMed  Google Scholar 

  27. Rehman SU, Ali T, Alam SI, Ullah R, Zeb A, Lee KW, Rutten BPF, Kim MO (2019) Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol Neurobiol 56(4):2774–2790. https://doi.org/10.1007/s12035-018-1280-9

    Article  CAS  PubMed  Google Scholar 

  28. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N et al (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20(6):947–956. https://doi.org/10.1159/000110455

    Article  CAS  PubMed  Google Scholar 

  29. Wohleb ES, Godbout JP (2013) Basic aspects of the immunology of neuroinflammation. Mod Trends Pharmacopsychiatry 28:1–19. https://doi.org/10.1159/000343964

    Article  CAS  PubMed  Google Scholar 

  30. Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6(5):237–245. https://doi.org/10.1016/j.cnr.2006.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kennedy RH, Silver R (2015) Neuroimmune signaling: cytokines and the CNS. In: Neuroscience in the 21st century, pp. 1–41. https://doi.org/10.1007/978-1-4614-6434-1_174-1

    Chapter  Google Scholar 

  32. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12. https://doi.org/10.1016/j.neures.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  33. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K (2012) Brain dendritic cells: biology and pathology. Acta Neuropathol 124(5):599–614. https://doi.org/10.1007/s00401-012-1018-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zusso M, Lunardi V, Franceschini D, Pagetta A, Lo R, Stifani S, Frigo AC, Giusti P et al (2019) Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation 16(1):148. https://doi.org/10.1186/s12974-019-1538-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924. https://doi.org/10.4049/jimmunol.173.6.3916

    Article  CAS  PubMed  Google Scholar 

  36. Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43(3):281–291. https://doi.org/10.1002/glia.10256

    Article  PubMed  Google Scholar 

  37. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61(11):1013–1021. https://doi.org/10.1093/jnen/61.11.1013

    Article  CAS  PubMed  Google Scholar 

  38. Wadachi R, Hargreaves KM (2006) Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 85(1):49–53. https://doi.org/10.1177/154405910608500108

    Article  CAS  PubMed  Google Scholar 

  39. Grace PM, Ramos KM, Rodgers KM, Wang X, Hutchinson MR, Lewis MT, Morgan KN, Kroll JL et al (2014) Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 280:299–317. https://doi.org/10.1016/j.neuroscience.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  40. Trudler D, Farfara D, Frenkel D (2010) Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediat Inflamm 2010:1–12. https://doi.org/10.1155/2010/497987

    Article  CAS  Google Scholar 

  41. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519. https://doi.org/10.1073/pnas.1432609100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaikwad S, Agrawal-Rajput R (2015) Lipopolysaccharide from Rhodobacter sphaeroides attenuates microglia-mediated inflammation and phagocytosis and directs regulatory T cell response. Int J Inflammation 2015:361326–361313. https://doi.org/10.1155/2015/361326

    Article  CAS  Google Scholar 

  43. Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241(1):206–227. https://doi.org/10.1111/j.1600-065X.2011.01015.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanly A, Petito CK (1998) HLA-DR-positive dendritic cells of the normal human choroid plexus: a potential reservoir of HIV in the central nervous system. Hum Pathol 29(1):88–93. https://doi.org/10.1016/S0046-8177(98)90395-1

    Article  CAS  PubMed  Google Scholar 

  45. Serot J-M, Foliguet B, Béné M-C, Faure G-C (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. NeuroReport 8(8):1995–1998. https://doi.org/10.1097/00001756-199705260-00039

    Article  CAS  PubMed  Google Scholar 

  46. Pashenkov M, Huang Y-M, Kostulas V, Haglund M, Söderström M, Link H (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124(3):480–492. https://doi.org/10.1093/brain/124.3.480

    Article  CAS  PubMed  Google Scholar 

  47. Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74(2):599–608. https://doi.org/10.1016/0306-4522(96)00160-1

    Article  CAS  PubMed  Google Scholar 

  48. De Laere M, Berneman ZN, Cools N (2018) To the brain and back: migratory paths of dendritic cells in multiple sclerosis. J Neuropathol Exp Neurol 77(3):178–192. https://doi.org/10.1093/jnen/nlx114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimura H, Nitahara A, Ito A, Tomiyama K, Ito M, Kawai K (2005) Up-regulation of cell surface Toll-like receptor 4-MD2 expression on dendritic epidermal T cells after the emigration from epidermis during cutaneous inflammation. J Dermatol Sci 37(2):101–110. https://doi.org/10.1016/j.jdermsci.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  50. Frleta D, Noelle RJ, Wade WF (2003) CD40-mediated up-regulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. J Leukoc Biol 74(6):1064–1073. https://doi.org/10.1189/jlb.0203062

    Article  CAS  PubMed  Google Scholar 

  51. Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A (2020) The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 17(1):108. https://doi.org/10.1186/s12974-020-01785-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang J, Liu R, Lu F, Xu F, Zheng J, Li Z, Cui W, Wang C et al (2019) Fast green FCF attenuates lipopolysaccharide-induced depressive-like behavior and downregulates TLR4/Myd88/NF-kappaB signal pathway in the mouse hippocampus. Front Pharmacol 10:501. https://doi.org/10.3389/fphar.2019.00501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Catorce M, Gevorkian G (2016) LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14 (1875–6190 (Electronic):155–164. https://doi.org/10.2174/1570159x14666151204122017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorrenti V, Contarini G, Sut S, Dall’Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M (2018) Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 9:183. https://doi.org/10.3389/fphar.2018.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W et al (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9(1):5790. https://doi.org/10.1038/s41598-019-42286-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, García-Bueno B, Leza JC (2017) Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 7(1):13113–13113. https://doi.org/10.1038/s41598-017-13302-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vutukuri R, Brunkhorst R, Kestner RI, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W (2018) Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 144(2):172–185. https://doi.org/10.1111/jnc.14236

    Article  CAS  PubMed  Google Scholar 

  58. Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Shah GN, Price TO et al (2009) Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23(4):507–517. https://doi.org/10.1016/j.bbi.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12. https://doi.org/10.1016/j.bbi.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  60. Banks WA, Robinson SM (2010) Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 24(1):102–109. https://doi.org/10.1016/j.bbi.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  61. Nagyoszi P, Wilhelm I, Farkas AE, Fazakas C, Dung NTK, Haskó J, Krizbai IA (2010) Expression and regulation of toll-like receptors in cerebral endothelial cells. 57 (1872–9754 (Electronic):556–564. https://doi.org/10.1016/j.neuint.2010.07.002

  62. Ghosh A, Birngruber T, Sattler W, Kroath T, Ratzer M, Sinner F, Pieber TR (2014) Assessment of blood-brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOFM). PLoS One 9(5):e98143. https://doi.org/10.1371/journal.pone.0098143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mallard C (2012) Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012:701950–701919. https://doi.org/10.5402/2012/701950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1):180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miyake K (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 12(4):195–204. https://doi.org/10.1179/096805106X118807

    Article  CAS  PubMed  Google Scholar 

  66. Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64(1):25–32. https://doi.org/10.1002/jlb.64.1.25

    Article  CAS  PubMed  Google Scholar 

  67. Ranoa DRE, Kelley SL, Tapping RI (2013) Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J Biol Chem 288(14):9729–9741. https://doi.org/10.1074/jbc.M113.453266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114(1):13–27. https://doi.org/10.1111/j.1471-4159.2010.06736.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316. https://doi.org/10.3389/fimmu.2014.00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511. https://doi.org/10.1038/nri1391

    Article  CAS  PubMed  Google Scholar 

  71. Wardill HR, Van Sebille YZ, Mander KA, Gibson RJ, Logan RM, Bowen JM, Sonis ST (2015) Toll-like receptor 4 signaling: a common biological mechanism of regimen-related toxicities: an emerging hypothesis for neuropathy and gastrointestinal toxicity. Cancer Treat Rev 41(2):122–128. https://doi.org/10.1016/j.ctrv.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  72. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364. https://doi.org/10.1038/nri2079

    Article  CAS  PubMed  Google Scholar 

  73. Saavedra JM (2012) Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond) 123(10):567–590. https://doi.org/10.1042/CS20120078

    Article  CAS  Google Scholar 

  74. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K et al (2003) TRAM is specifically involved in the toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat Immunol 4(11):1144–1150. https://doi.org/10.1038/ni986

    Article  CAS  PubMed  Google Scholar 

  75. Chen L, Fu W, Zheng L, Wang Y, Liang G (2018) Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 23(6):1187–1202. https://doi.org/10.1016/j.drudis.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  76. Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST (2018) Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 22(9):765–781. https://doi.org/10.1080/14728222.2018.1515917

    Article  CAS  PubMed  Google Scholar 

  77. Trotta T, Porro C, Calvello R, Panaro MA (2014) Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 268(1–2):1–12. https://doi.org/10.1016/j.jneuroim.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  78. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2016) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633. https://doi.org/10.1080/00207454.2016.1212854

    Article  CAS  PubMed  Google Scholar 

  79. Ji W-W, Wang S-Y, Ma Z-Q, Li R-P, Li S-S, Xue J-S, Li W, Niu X-X et al (2014) Effects of perillaldehyde on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 116:1–8. https://doi.org/10.1016/j.pbb.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  80. Chen HJ, Spiers JG, Sernia C, Lavidis NA (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic Biol Med 90:219–229. https://doi.org/10.1016/j.freeradbiomed.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  81. Zhu Y, Klomparens EA, Guo S, Geng X (2019) Neuroinflammation caused by mental stress: the effect of chronic restraint stress and acute repeated social defeat stress in mice. Neurol Res 41(8):762–769. https://doi.org/10.1080/01616412.2019.1615670

    Article  CAS  PubMed  Google Scholar 

  82. Farooq RK, Isingrini E, Tanti A, Le Guisquet AM, Arlicot N, Minier F, Leman S, Chalon S et al (2012) Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behav Brain Res 231(1):130–137. https://doi.org/10.1016/j.bbr.2012.03.020

    Article  PubMed  Google Scholar 

  83. Gárate I, Garcia-Bueno B, Madrigal JL, Caso JR, Alou L, Gomez-Lus ML, Mico JA, Leza JC (2013) Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 73(1):32–43. https://doi.org/10.1016/j.biopsych.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  84. Gárate I, Garcia-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, Micó J, Leza JC (2011) Origin and consequences of brain TLR4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8(151):1–14. https://doi.org/10.1186/1742-2094-8-151

    Article  CAS  Google Scholar 

  85. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130(5):906–917. https://doi.org/10.1016/j.cell.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  86. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316(5831):1632–1634. https://doi.org/10.1126/science.1139111

    Article  CAS  PubMed  Google Scholar 

  87. Zusso M, Mercanti G, Belluti F, Di Martino RMC, Pagetta A, Marinelli C, Brun P, Ragazzi E et al (2017) Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism. Br J Pharmacol 174(10):1090–1103. https://doi.org/10.1111/bph.13746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Irvine KL, Gangloff M, Walsh CM, Spring DR, Gay NJ, Bryant CE (2014) Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2. PLoS One 9(5):e98776. https://doi.org/10.1371/journal.pone.0098776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang X, Peng Y, Grace PM, Metcalf MD, Kwilasz AJ, Wang Y, Zhang T, Wu S et al (2019) Stereochemistry and innate immune recognition: (+)-norbinaltorphimine targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling. FASEB J 33(8):9577–9587. https://doi.org/10.1096/fj.201900173RRR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michalska P, Buendia I, Duarte P, FernandezMendivil C, Negredo P, Cuadrado A, Lopez MG, Leon R (2019) Melatonin-sulforaphane hybrid ITH12674 attenuates glial response in vivo by blocking LPS binding to MD2 and receptor oligomerization. Pharmacol Res 152:104597. https://doi.org/10.1016/j.phrs.2019.104597

    Article  CAS  PubMed  Google Scholar 

  91. Seijger C, Hoefsloot W, Bergsma-de Guchteneire I, te Brake L, van Ingen J, Kuipers S, van Crevel R, Aarnoutse R et al (2019) High-dose rifampicin in tuberculosis: experiences from a Dutch tuberculosis centre. PLoS One 14(3):e0213718. https://doi.org/10.1371/journal.pone.0213718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR et al (2013) Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J 27(7):2713–2722. https://doi.org/10.1096/fj.12-222992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Campello L, Kutsyr O, Noailles A, Michalska P, Fernandez-Sanchez L, Martinez-Gil N, Ortuno-Lizaran I, Sanchez-Saez X et al (2020) New Nrf2-inducer compound ITH12674 slows the progression of retinitis pigmentosa in the mouse model rd10. Cell Physiol Biochem 54(1):142–159. https://doi.org/10.33594/000000210

    Article  CAS  PubMed  Google Scholar 

  94. Wu K, Wang ZZ, Liu D, Qi XR (2014) Pharmacokinetics, brain distribution, release and blood-brain barrier transport of Shunaoxin pills. J Ethnopharmacol 151 (1872-7573 (Electronic):1133–1140. https://doi.org/10.1016/j.jep.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  95. Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19. https://doi.org/10.4103/0972-2327.40220

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shatzmiller SE, Lapidot I, Zats GM (2016) Blood brain barrier crossing for therapeutic and diagnostic agents. In: SM J Neurol Disord Stroke, 2019. pp. 1012–1018

  97. Pea F, Pavan F, Nascimben E, Benetton C, Scotton PG, Vaglia A, Furlanut M (2003) Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother 47(10):3104–3108. https://doi.org/10.1128/aac.47.10.3104-3108.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu F, Yang J, Lu F, Liu R, Zheng J, Zhang J, Cui W, Wang C et al (2018) Fast green FCF alleviates pain hypersensitivity and down-regulates the levels of spinal P2X4 expression and pro-inflammatory cytokines in a rodent inflammatory pain model. Front Pharmacol 9:534. https://doi.org/10.3389/fphar.2018.00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A (2019) Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 23(10):865–882. https://doi.org/10.1080/14728222.2019.1676416

    Article  CAS  PubMed  Google Scholar 

  100. Parada E, Casas AI, Palomino-Antolin A, Gomez-Rangel V, Rubio-Navarro A, Farre-Alins V, Narros-Fernandez P, Guerrero-Hue M et al (2019) Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. Br J Pharmacol 176(15):2764–2779. https://doi.org/10.1111/bph.14703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bretonnière C, Jozwiak M, Girault C, Beuret P, Trouillet J-L, Anguel N, Caillon J, Potel G et al (2015) Rifampin use in acute community-acquired meningitis in intensive care units: the French retrospective cohort ACAM-ICU study. Crit Care (London, England) 19(1):303–303. https://doi.org/10.1186/s13054-015-1021-7

    Article  Google Scholar 

  102. Moet FJ, Pahan D, Oskam L, Richardus JH, Group CS (2008) Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: cluster randomised controlled trial. BMJ (Clinical research ed) 336(7647):761–764. https://doi.org/10.1136/bmj.39500.885752.BE

    Article  Google Scholar 

  103. Alberts AW (1990) Lovastatin and simvastatin - inhibitors of HMG CoA reductase and cholesterol biosynthesis. Cardiology 77(Suppl. 4):14–21. https://doi.org/10.1159/000174688

    Article  PubMed  Google Scholar 

  104. Pahan K, Sheikh FG, Namboodiri AM, Singh I (1997) Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 100(11):2671–2679. https://doi.org/10.1172/JCI119812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pushpakumar S, Ren L, Kundu S, Gamon A, Tyagi SC, Sen U (2017) Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci Rep 7(1):6349. https://doi.org/10.1038/s41598-017-06484-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li C, Che LH, Ji TF, Shi L, Yu JL (2017) Effects of the TLR4 signaling pathway on apoptosis of neuronal cells in diabetes mellitus complicated with cerebral infarction in a rat model. Sci Rep 7:43834. https://doi.org/10.1038/srep43834

    Article  PubMed  PubMed Central  Google Scholar 

  107. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. https://doi.org/10.1002/glia.20467

    Article  PubMed  PubMed Central  Google Scholar 

  108. Nordengen K, Kirsebom BE, Henjum K, Selnes P, Gisladottir B, Wettergreen M, Torsetnes SB, Grontvedt GR et al (2019) Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation 16(1):46. https://doi.org/10.1186/s12974-019-1399-2

    Article  PubMed  PubMed Central  Google Scholar 

  109. Refolo V, Stefanova N (2019) Neuroinflammation and glial phenotypic changes in alpha-synucleinopathies. Front Cell Neurosci 13(263). https://doi.org/10.3389/fncel.2019.00263

  110. Meneses CS, Müller HY, Herzberg DE, Uberti B, Werner MP, Bustamante HA (2018) Microglia and astrocyte activation in the spinal cord of lame horses. Vet Anaesth Analg 45(1):92–102. https://doi.org/10.1016/j.vaa.2017.10.001

    Article  PubMed  Google Scholar 

  111. Metwally E, Farouk SM, Hossain MS, Raihan O (2019) Expression of glial cells molecules in the optic nerve of adult dromedary camel (Camelus dromedarius): a histological and immunohistochemical analysis. Anat Histol Embryol 48(1):74–86. https://doi.org/10.1111/ahe.12413

    Article  PubMed  Google Scholar 

  112. Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7(1):56. https://doi.org/10.1186/s13195-015-0139-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2):242–247. https://doi.org/10.1007/s12035-010-8105-9

    Article  CAS  PubMed  Google Scholar 

  114. Jin Y, Sun LH, Yang W, Cui RJ, Xu SB (2019) The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol 10:515–515. https://doi.org/10.3389/fneur.2019.00515

    Article  PubMed  PubMed Central  Google Scholar 

  115. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430–430. https://doi.org/10.3389/fncel.2014.00430

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kitazawa T, Tsujimoto T, Kawaratani H, Fukui H (2010) Salvage effect of E5564, Toll-like receptor 4 antagonist on d-galactosamine and lipopolysaccharide-induced acute liver failure in rats. 25(5):1009–1012. https://doi.org/10.1111/j.1440-1746.2009.06145.x

  117. Cheng K, Yang A, Hu X, Zhu D, Liu K (2018) Curcumin attenuates pulmonary inflammation in lipopolysaccharide induced acute lung injury in neonatal rat model by activating peroxisome proliferator-activated receptor gamma (PPARgamma) pathway. Med Sci Monit 24:1178–1184. https://doi.org/10.12659/msm.908714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fang Q, Wang J, Zhang Y, Wang L, Li W, Han J, Huang W, Liang G et al (2018) Inhibition of myeloid differentiation factor-2 attenuates obesity-induced cardiomyopathy and fibrosis. Biochim Biophys Acta Mol basis Dis 1864(1):252–262. https://doi.org/10.1016/j.bbadis.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  119. Barochia A, Solomon S, Cui X, Natanson C, Eichacker PQ (2011) Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol 7(4):479–494. https://doi.org/10.1517/17425255.2011.558190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira J-P, Wittebole X, Dugernier T et al (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309 (1538-3598 (Electronic):1154–1162. https://doi.org/10.1001/jama.2013.2194

    Article  CAS  PubMed  Google Scholar 

  121. Duan G, Zhu J, Xu J, Liu Y (2014) Targeting myeloid differentiation 2 for treatment of sepsis. Front Biosci (Landmark edition) 19 (1093-4715 (Electronic):904–915. https://doi.org/10.2741/4256

    Article  Google Scholar 

Download references

Funding

This work was supported by the Senior Research Scholar grant from the National Research Council of Thailand (SCC), the Thailand Science Research and Innovation grant DBG6280006 (NC), and RSA6180071 (WP), the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC), and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriporn C. Chattipakorn.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oo, T.T., Pratchayasakul, W., Chattipakorn, N. et al. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 57, 4825–4844 (2020). https://doi.org/10.1007/s12035-020-02066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02066-2

Keywords

Navigation