Skip to main content

Advertisement

Log in

Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer’s disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  2. Cohen LH, Noell WK (1960) Glucose catabolism of rabbit retina before and after development of visual function. J Neurochem 5:253–276

    Article  CAS  PubMed  Google Scholar 

  3. Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8:1–34

    CAS  PubMed  Google Scholar 

  4. Ames A, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12:840–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winkler BS, Sauer MW, Starnes CA (2003) Modulation of the Pasteur effect in retinal cells: implications for understanding compensatory metabolic mechanisms. Exp Eye Res 76:715–723

    Article  CAS  PubMed  Google Scholar 

  6. Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC (2004) Cultured retinal neuronal cells and Müller cells both show net production of lactate. Neurochem Int 45:311–320. https://doi.org/10.1016/j.neuint.2003.08.017

    Article  CAS  PubMed  Google Scholar 

  7. Ng SK, Wood JPM, Chidlow G et al (2015) Cancer-like metabolism of the mammalian retina. Clin Exp Ophthalmol 43:367–376. https://doi.org/10.1111/ceo.12462

    Article  PubMed  Google Scholar 

  8. Vohra R, Gurubaran IS, Henriksen U, Bergersen LH, Rasmussen LJ, Desler C, Skytt DM, Kolko M (2017) Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1. Mitochondrion 36:52–59. https://doi.org/10.1016/j.mito.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Kondo M, Bill A (1997) Glucose metabolism in cat outer retina. Effects of light and hyperoxia. Invest Ophthalmol Vis Sci 38:48–55

    CAS  PubMed  Google Scholar 

  10. Wang L, Törnquist P, Bill A (1997) Glucose metabolism in pig outer retina in light and darkness. Acta Physiol Scand 160:75–81. https://doi.org/10.1046/j.1365-201X.1997.00030.x

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Törnquist P, Bill A (1997) Glucose metabolism of the inner retina in pigs in darkness and light. Acta Physiol Scand 160:71–74. https://doi.org/10.1046/j.1365-201X.1997.00131.x

    Article  CAS  PubMed  Google Scholar 

  12. Country MW (2017) Retinal metabolism: a comparative look at energetics in the retina. Brain Res 1672:50–57. https://doi.org/10.1016/j.brainres.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  13. Hegde KR, Kovtun S, Varma SD (2010) Inhibition of glycolysis in the retina by oxidative stress: prevention by pyruvate. Mol Cell Biochem 343:101–105. https://doi.org/10.1007/s11010-010-0503-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adler AJ, Southwick RE (1992) Distribution of glucose and lactate in the interphotoreceptor matrix. Ophthalmic Res 24:243–252. https://doi.org/10.1159/000267174

    Article  CAS  PubMed  Google Scholar 

  15. Berkowitz BA, Bansal N, Wilson CA (1994) Non-invasive measurement of steady-state vitreous lactate concentration. NMR Biomed 7:263–268

    Article  CAS  PubMed  Google Scholar 

  16. Goodwin ML, Harris JE, Hernández A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1:558–569. https://doi.org/10.1177/193229680700100414

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vohra R, Aldana BI, Waagepetersen H, Bergersen LH, Kolko M (2019) Dual properties of lactate in Müller cells: the effect of GPR81 activation. Invest Ophthalmol Vis Sci 60:999–1008. https://doi.org/10.1167/iovs.18-25458

    Article  CAS  PubMed  Google Scholar 

  18. Vohra R, Aldana BI, Bulli G et al (2019) Lactate-mediated protection of retinal ganglion cells. J Mol Biol 431:1878–1888. https://doi.org/10.1016/j.jmb.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  19. Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, Gajardo D, Bravo S et al (2017) A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care 7:29. https://doi.org/10.1186/s13613-017-0253-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varis E, Pettilä V, Poukkanen M, Jakob SM, Karlsson S, Perner A, Takala J, Wilkman E, FINNAKI Study Group. (2017) Evolution of blood lactate and 90-day mortality in septic shock. A Post Hoc Analysis of the FINNAKI Study Shock 47:574–581. doi: https://doi.org/10.1097/SHK.0000000000000772

  21. Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, Bloch J, Messerer M et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40:412–421. https://doi.org/10.1007/s00134-013-3203-6

    Article  CAS  PubMed  Google Scholar 

  22. Cureton EL, Kwan RO, Dozier KC, Sadjadi J, Pal JD, Victorino GP (2010) A different view of lactate in trauma patients: protecting the injured brain. J Surg Res 159:468–473. https://doi.org/10.1016/j.jss.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  23. Rice AC, Zsoldos R, Chen T, Wilson MS, Alessandri B, Hamm RJ, Bullock MR (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–159. https://doi.org/10.1016/s0006-8993(01)03299-1

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823. https://doi.org/10.1016/j.cell.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794. https://doi.org/10.1002/jnr.10043

    Article  CAS  PubMed  Google Scholar 

  26. Jourdain P, Allaman I, Rothenfusser K, Fiumelli H, Marquet P, Magistretti PJ (2016) L-lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade. Sci Rep 6:21250. https://doi.org/10.1038/srep21250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taher M, Leen WG, Wevers RA, Willemsen MA (2016) Lactate and its many faces. Eur J Paediatr Neurol 20:3–10. https://doi.org/10.1016/j.ejpn.2015.09.008

    Article  PubMed  Google Scholar 

  28. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138. https://doi.org/10.1038/jcbfm.2011.175

    Article  CAS  PubMed  Google Scholar 

  29. Jacobson M, Hirose G (1978) Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202:637–639. https://doi.org/10.1126/science.705349

    Article  CAS  PubMed  Google Scholar 

  30. Chuang JC, Raymond PA (2001) Zebrafish genes rx1 and rx2 help define the region of forebrain that gives rise to retina. Dev Biol 231:13–30. https://doi.org/10.1006/dbio.2000.0125

    Article  CAS  PubMed  Google Scholar 

  31. Skytt DM, Toft-Kehler AK, Brændstrup CT et al (2016) Glia-neuron interactions in the retina can be studied in cocultures of Müller cells and retinal ganglion cells. Biomed Res Int 2016:1087647–1087610. https://doi.org/10.1155/2016/1087647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matteucci A, Gaddini L, Villa M, Varano M, Parravano M, Monteleone V, Cavallo F, Leo L et al (2014) Neuroprotection by rat Müller glia against high glucose-induced neurodegeneration through a mechanism involving ERK1/2 activation. Exp Eye Res 125:20–29. https://doi.org/10.1016/j.exer.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  33. Kashiwagi K, Iizuka Y, Araie M, Suzuki Y, Tsukahara S (2001) Effects of retinal glial cells on isolated rat retinal ganglion cells. Invest Ophthalmol Vis Sci 42:2686–2694

    CAS  PubMed  Google Scholar 

  34. Ruzafa N, Vecino E (2015) Effect of Müller cells on the survival and neuritogenesis in retinal ganglion cells. Arch Soc Esp Oftalmol 90:522–526. https://doi.org/10.1016/j.oftal.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  35. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  36. Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61:651–678. https://doi.org/10.1002/glia.22477

    Article  PubMed  Google Scholar 

  37. Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225:1174–1175. https://doi.org/10.1126/science.6474173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman EA (1987) Regulation of potassium levels by Müller cells in the vertebrate retina. Can J Physiol Pharmacol 65:1028–1032

    Article  CAS  PubMed  Google Scholar 

  39. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 13:3333–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skatchkov SN, Vyklicky L, Clasen T, Orkand RK (1996) Effect of cutting the optic nerve on K+ currents in endfeet of Muller cells isolated from frog retina. Neurosci Lett 208:81–84

    Article  CAS  PubMed  Google Scholar 

  41. Hirrlinger PG, Wurm A, Hirrlinger J, Bringmann A, Reichenbach A (2008) Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ. J Neurochem 105:1405–1417. https://doi.org/10.1111/j.1471-4159.2008.05243.x

    Article  CAS  PubMed  Google Scholar 

  42. Fernández JM, Di Giusto G, Kalstein M et al (2013) Cell volume regulation in cultured human retinal Müller cells is associated with changes in transmembrane potential. PLoS One 8:e57268. https://doi.org/10.1371/journal.pone.0057268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451. https://doi.org/10.1016/j.preteyeres.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  44. Ruzafa N, Pereiro X, Lepper MF, Hauck SM, Vecino E (2018) A proteomics approach to identify candidate proteins secreted by Müller glia that protect ganglion cells in the retina. Proteomics 18:e1700321. https://doi.org/10.1002/pmic.201700321

    Article  CAS  PubMed  Google Scholar 

  45. Toft-Kehler AK, Skytt DM, Kolko M (2018) A perspective on the Müller cell-neuron metabolic partnership in the inner retina. Mol Neurobiol 55:5353–5361. https://doi.org/10.1007/s12035-017-0760-7

    Article  CAS  PubMed  Google Scholar 

  46. Bringmann A, Grosche A, Pannicke T, Reichenbach A (2013) GABA and glutamate uptake and metabolism in retinal glial (Müller) cells. Front Endocrinol (Lausanne) 4:48. https://doi.org/10.3389/fendo.2013.00048

    Article  CAS  Google Scholar 

  47. Sarthy VP, Pignataro L, Pannicke T, Weick M, Reichenbach A, Harada T, Tanaka K, Marc R (2005) Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice. Glia 49:184–196. https://doi.org/10.1002/glia.20097

    Article  PubMed  Google Scholar 

  48. Toft-Kehler AK, Skytt DM, Poulsen KA, Brændstrup CT, Gegelashvili G, Waagepetersen H, Kolko M (2014) Limited energy supply in Müller cells alters glutamate uptake. Neurochem Res 39:941–949. https://doi.org/10.1007/s11064-014-1289-z

    Article  CAS  PubMed  Google Scholar 

  49. López-Colomé AM, López E, Mendez-Flores OG, Ortega A (2016) Glutamate receptor stimulation up-regulates glutamate uptake in human Müller glia cells. Neurochem Res 41:1797–1805. https://doi.org/10.1007/s11064-016-1895-z

    Article  CAS  PubMed  Google Scholar 

  50. Germer A, Biedermann B, Wolburg H, Schuck J, Grosche J, Kuhrt H, Reichelt W, Schousboe A et al (1998) Distribution of mitochondria within Müller cells--I. Correlation with retinal vascularization in different mammalian species. J Neurocytol 27:329–345

    Article  CAS  PubMed  Google Scholar 

  51. Winkler BS (1981) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77:667–692. https://doi.org/10.1085/jgp.77.6.667

    Article  CAS  PubMed  Google Scholar 

  52. Winkler BS, Arnold MJ, Brassell MA, Puro DG (2000) Energy metabolism in human retinal Müller cells. Invest Ophthalmol Vis Sci 41:3183–3190

    CAS  PubMed  Google Scholar 

  53. Vohra R, Aldana BI, Skytt DM, Freude K, Waagepetersen H, Bergersen LH, Kolko M (2018) Essential roles of lactate in Müller cell survival and function. Mol Neurobiol 55:9108–9121. https://doi.org/10.1007/s12035-018-1056-2

    Article  CAS  PubMed  Google Scholar 

  54. Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15:5179–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ola MS, LaNoue KF (2019) Molecular basis for increased lactate formation in the Müller glial cells of retina. Brain Res Bull 144:158–163. https://doi.org/10.1016/j.brainresbull.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  56. Toft-Kehler AK, Gurubaran IS, Desler C, Rasmussen LJ, Skytt DM, Kolko M (2016) Oxidative stress-induced dysfunction of Müller cells during starvation. Invest Ophthalmol Vis Sci 57:2721–2728. https://doi.org/10.1167/iovs.16-19275

    Article  CAS  PubMed  Google Scholar 

  57. Winkler BS, Sauer MW, Starnes CA (2004) Effects of L-glutamate/D-aspartate and monensin on lactic acid production in retina and cultured retinal Müller cells. J Neurochem 89:514–525. https://doi.org/10.1111/j.1471-4159.2004.02405.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Hall G, Strømstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129. https://doi.org/10.1038/jcbfm.2009.35

    Article  CAS  PubMed  Google Scholar 

  59. van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 199:499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x

    Article  CAS  Google Scholar 

  60. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T et al (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118. https://doi.org/10.1038/nature24057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halestrap AP, Wilson MC (2012) The monocarboxylate transporter family--role and regulation. IUBMB Life 64:109–119. https://doi.org/10.1002/iub.572

    Article  CAS  PubMed  Google Scholar 

  62. Takimoto M, Takeyama M, Hamada T (2013) Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle. Metab Clin Exp 62:1633–1640. https://doi.org/10.1016/j.metabol.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  63. Lindsay KJ, Du J, Sloat SR et al (2014) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc Natl Acad Sci U S A 111:15579–15584. https://doi.org/10.1073/pnas.1412441111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. KUWABARA T, COGAN DG (1961) Retinal glycogen. Arch Ophthalmol 66:680–688

    Article  CAS  PubMed  Google Scholar 

  65. Johnson NF (1977) Retinal glycogen content during ischaemia. Albrecht Von Graefes Arch Klin Exp Ophthalmol 203:271–282

    Article  CAS  PubMed  Google Scholar 

  66. Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Fleckenstein B, Jung G, Hamprecht B (2005) Glycogen phosphorylase isozyme pattern in mammalian retinal Müller (glial) cells and in astrocytes of retina and optic nerve. Glia 49:84–95. https://doi.org/10.1002/glia.20102

    Article  PubMed  Google Scholar 

  67. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J et al (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24:2784–2795. https://doi.org/10.1093/cercor/bht136

    Article  PubMed  Google Scholar 

  68. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J et al (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 93:1045–1055. https://doi.org/10.1002/jnr.23593

    Article  CAS  PubMed  Google Scholar 

  69. Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18:765–810

    Article  CAS  PubMed  Google Scholar 

  70. Massey SC, Miller RF (1988) Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. J Physiol Lond 405:635–655. https://doi.org/10.1113/jphysiol.1988.sp017353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. LUCAS DR, NEWHOUSE JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201

    Article  CAS  PubMed  Google Scholar 

  72. Olney JW (1982) The toxic effects of glutamate and related compounds in the retina and the brain. Retina (Philadelphia, pa) 2:341–359

    Article  CAS  Google Scholar 

  73. Calzada JI, Jones BE, Netland PA, Johnson DA (2002) Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers. Neurochem Res 27:79–88

    Article  CAS  PubMed  Google Scholar 

  74. Manev H, Favaron M, Guidotti A, Costa E (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106–112

    CAS  PubMed  Google Scholar 

  75. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276. https://doi.org/10.1002/neu.480230915

    Article  CAS  PubMed  Google Scholar 

  76. Beck J, Lenart B, Kintner DB, Sun D (2003) Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity. J Neurosci 23:5061–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  78. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  CAS  PubMed  Google Scholar 

  79. Imasawa M, Kashiwagi K, Iizuka Y, Tanaka M, Tsukahara S (2005) Different expression role among glutamate transporters in rat retinal glial cells under various culture conditions. Brain Res Mol Brain Res 142:1–8. https://doi.org/10.1016/j.molbrainres.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  80. Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479. https://doi.org/10.1007/s00424-003-1146-4

    Article  CAS  PubMed  Google Scholar 

  81. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804. https://doi.org/10.1242/jeb.017574

    Article  CAS  PubMed  Google Scholar 

  82. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321. https://doi.org/10.1073/pnas.95.1.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, van Hove I, Moons L, Waagepetersen HS, Kolko M (2017) Mitochondrial function in Müller cells - does it matter? Mitochondrion 36:43–51. https://doi.org/10.1016/j.mito.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  84. Rueda EM, Johnson JE, Giddabasappa A et al (2016) The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Mol Vis 22:847–885

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Swanson RA (1992) Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci Lett 147:143–146

    Article  CAS  PubMed  Google Scholar 

  86. Yan X, Shi ZF, Xu LX, Li JX, Wu M, Wang XX, Jia M, Dong LP et al (2017) Glutamate impairs mitochondria aerobic respiration capacity and enhances glycolysis in cultured rat astrocytes. Biomed Environ Sci 30:44–51. https://doi.org/10.3967/bes2017.005

    Article  PubMed  Google Scholar 

  87. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O'Donnell JC, Spruce LA, Xiao R et al (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288. https://doi.org/10.1523/JNEUROSCI.3305-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Izumi Y, Kirby CO, Benz AM, Olney JW, Zorumski CF (1999) Müller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia 25:379–389

    Article  CAS  PubMed  Google Scholar 

  89. Matsumoto H, Sugio S, Seghers F, Krizaj D, Akiyama H, Ishizaki Y, Gailly P, Shibasaki K (2018) Retinal detachment-induced Müller glial cell swelling activates TRPV4 ion channels and triggers photoreceptor death at body temperature. J Neurosci 38:8745–8758. https://doi.org/10.1523/JNEUROSCI.0897-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wahl V, Vogler S, Grosche A, Pannicke T, Ueffing M, Wiedemann P, Reichenbach A, Hauck SM et al (2013) Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF. Neuroscience 246:59–72. https://doi.org/10.1016/j.neuroscience.2013.04.045

    Article  CAS  PubMed  Google Scholar 

  91. Iandiev I, Wurm A, Pannicke T, Wiedemann P, Reichenbach A, Robson SC, Zimmermann H, Bringmann A (2007) Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling. Purinergic Signal 3:423–433. https://doi.org/10.1007/s11302-007-9061-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia TB, Pannicke T, Vogler S, Berk BA, Grosche A, Wiedemann P, Seeger J, Reichenbach A et al (2014) Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release. J Neurochem 131:303–313. https://doi.org/10.1111/jnc.12822

    Article  CAS  PubMed  Google Scholar 

  93. Akashi A, Miki A, Kanamori A, Nakamura M (2015) Aquaporin 9 expression is required for l-lactate to maintain retinal neuronal survival. Neurosci Lett 589:185–190. https://doi.org/10.1016/j.neulet.2015.01.063

    Article  CAS  PubMed  Google Scholar 

  94. Miki A, Kanamori A, Negi A, Naka M, Nakamura M (2013) Loss of aquaporin 9 expression adversely affects the survival of retinal ganglion cells. Am J Pathol 182:1727–1739. https://doi.org/10.1016/j.ajpath.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  95. Bergersen LH, Gjedde A (2012) Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenerg 4:5. https://doi.org/10.3389/fnene.2012.00005

    Article  CAS  Google Scholar 

  96. Vohra R, Tsai JC, Kolko M (2013) The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol 58:311–320. https://doi.org/10.1016/j.survophthal.2012.08.010

    Article  PubMed  Google Scholar 

  97. Williams PA, Marsh-Armstrong N, Howell GR, Lasker/IRRF initiative on astrocytes and glaucomatous neurodegeneration participants (2017) Neuroinflammation in glaucoma: a new opportunity. Exp Eye Res 157:20–27. https://doi.org/10.1016/j.exer.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang X, Hondur G, Tezel G (2016) Antioxidant treatment limits neuroinflammation in experimental glaucoma. Invest Ophthalmol Vis Sci 57:2344–2354. https://doi.org/10.1167/iovs.16-19153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Du Y, Miller CM, Kern TS (2003) Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med 35:1491–1499

    Article  CAS  PubMed  Google Scholar 

  100. Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol 287:R735–R741. https://doi.org/10.1152/ajpregu.00080.2003

    Article  CAS  PubMed  Google Scholar 

  101. Frenzel J, Richter J, Eschrich K (2005) Pyruvate protects glucose-deprived Müller cells from nitric oxide-induced oxidative stress by radical scavenging. Glia 52:276–288. https://doi.org/10.1002/glia.20244

    Article  PubMed  Google Scholar 

  102. Osborne NN (2010) Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 90:750–757. https://doi.org/10.1016/j.exer.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  103. Lee S, Van Bergen NJ, Kong GY et al (2011) Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res 93:204–212. https://doi.org/10.1016/j.exer.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  104. Harun-Or-Rashid M, Inman DM (2018) Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflammation 15:313. https://doi.org/10.1186/s12974-018-1346-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Madaan A, Nadeau-Vallée M, Rivera JC et al (2017) Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1). Am J Obstet Gynecol 216:60.e1–60.e17. https://doi.org/10.1016/j.ajog.2016.09.072

    Article  CAS  PubMed  Google Scholar 

  106. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89. https://doi.org/10.1016/j.preteyeres.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  107. Steketee MB, Moysidis SN, Weinstein JE, Kreymerman A, Silva JP, Iqbal S, Goldberg JL (2012) Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 53:7402–7411. https://doi.org/10.1167/iovs.12-10298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lathrop KL, Steketee MB (2013) Mitochondrial dynamics in retinal ganglion cell axon regeneration and growth cone guidance. J Ocul Biol 1:9

    PubMed  PubMed Central  Google Scholar 

  109. Magalhàes MM, Coimbra A (1970) Electron microscope radioautographic study of glycogen synthesis in the rabbit retina. J Cell Biol 47:263–275. https://doi.org/10.1083/jcb.47.1.263

    Article  PubMed  PubMed Central  Google Scholar 

  110. Goldman SS (1988) Gluconeogenesis in the amphibian retina. Lactate is preferred to glutamate as the gluconeogenic precursor. Biochem J 254:359–365. https://doi.org/10.1042/bj2540359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zielke HR, Zielke CL, Baab PJ, Tildon JT (2007) Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J Neurochem 101:9–16. https://doi.org/10.1111/j.1471-4159.2006.04335.x

    Article  CAS  PubMed  Google Scholar 

  112. Wood JPM, Chidlow G, Graham M, Osborne NN (2005) Energy substrate requirements for survival of rat retinal cells in culture: the importance of glucose and monocarboxylates. J Neurochem 93:686–697. https://doi.org/10.1111/j.1471-4159.2005.03059.x

    Article  CAS  PubMed  Google Scholar 

  113. Vohra R, Kolko M (2018) Neuroprotection of the inner retina: Müller cells and lactate. Neural Regen Res 13:1741–1742. https://doi.org/10.4103/1673-5374.238612

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Magistretti PJ, Pellerin L (1997) Regulation by neurotransmitters of glial energy metabolism. Adv Exp Med Biol 429:137–143. https://doi.org/10.1007/978-1-4757-9551-6_10

    Article  CAS  PubMed  Google Scholar 

  116. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497. https://doi.org/10.1126/science.283.5401.496

    Article  CAS  PubMed  Google Scholar 

  117. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  118. Hurley JB, Lindsay KJ, Du J (2015) Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 93:1079–1092. https://doi.org/10.1002/jnr.23583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kolko M, Vosborg F, Henriksen UL, Hasan-Olive MM, Diget EH, Vohra R, Gurubaran IR, Gjedde A et al (2016) Lactate transport and receptor actions in retina: potential roles in retinal function and disease. Neurochem Res 41:1229–1236. https://doi.org/10.1007/s11064-015-1792-x

    Article  CAS  PubMed  Google Scholar 

  120. McGillem GS, Guidry C, Dacheux RF (1998) Antigenic changes of rabbit retinal Müller cells in culture. Invest Ophthalmol Vis Sci 39:1453–1461

    CAS  PubMed  Google Scholar 

  121. Hu J, Popp R, Frömel T, Ehling M, Awwad K, Adams RH, Hammes HP, Fleming I (2014) Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med 211:281–295. https://doi.org/10.1084/jem.20131494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ et al (2012) Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32:15715–15727. https://doi.org/10.1523/JNEUROSCI.2841-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL (2008) The transcriptome of retinal Müller glial cells. J Comp Neurol 509:225–238. https://doi.org/10.1002/cne.21730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, Stemmer-Rachamimov A, Shalek AK et al (2019) Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun 10:4902–4909. https://doi.org/10.1038/s41467-019-12780-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lukowski SW, Lo CY, Sharov AA et al (2019) A single-cell transcriptome atlas of the adult human retina. EMBO J 38:e100811. https://doi.org/10.15252/embj.2018100811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mochizuki Y, Iida A, Lyons E, Kageyama R, Nakauchi H, Murakami A, Watanabe S (2014) Use of cell type-specific transcriptome to identify genes specifically involved in Müller glia differentiation during retinal development. Dev Neurobiol 74:426–437. https://doi.org/10.1002/dneu.22131

    Article  CAS  PubMed  Google Scholar 

  127. Cai T-Q, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK et al (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun 377:987–991. https://doi.org/10.1016/j.bbrc.2008.10.088

    Article  CAS  PubMed  Google Scholar 

  128. Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X et al (2009) Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem 284:2811–2822. https://doi.org/10.1074/jbc.M806409200

    Article  CAS  PubMed  Google Scholar 

  129. Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297. https://doi.org/10.1038/sj.jcbfm.9600281

    Article  CAS  PubMed  Google Scholar 

  130. Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V et al (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557. https://doi.org/10.1038/ncomms15557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhu D, Zhou J, Xu X (2012) Influence of lactic acid on differential expression of vascular endothelial growth factor and pigment epithelium-derived factor in explants of rat retina. Curr Eye Res 37:1025–1029. https://doi.org/10.3109/02713683.2012.695853

    Article  CAS  PubMed  Google Scholar 

  132. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, Zeinali S, Molavi O (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785. https://doi.org/10.1016/j.biopha.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  133. Lee B, Ahn J, Yun C, Kim SW, Oh J (2018) Variation of retinal and choroidal vasculatures in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 59:5246–5255. https://doi.org/10.1167/iovs.17-23600

    Article  CAS  PubMed  Google Scholar 

  134. Yamanishi S, Katsumura K, Kobayashi T, Puro DG (2006) Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 290:H925–H934. https://doi.org/10.1152/ajpheart.01012.2005

    Article  CAS  PubMed  Google Scholar 

  135. Skov Jensen P, Metz Mariendal Pedersen S, Aalkjaer C, Bek T (2016) The vasodilating effects of insulin and lactate are increased in precapillary arterioles in the porcine retina ex vivo. Acta Ophthalmol 94:454–462. https://doi.org/10.1111/aos.13025

    Article  CAS  PubMed  Google Scholar 

  136. Berthet C, Castillo X, Magistretti PJ, Hirt L (2012) New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis 34:329–335. https://doi.org/10.1159/000343657

    Article  CAS  PubMed  Google Scholar 

  137. Vohra R, Dalgaard LM, Vibaek J et al (2019) Potential metabolic markers in glaucoma and their regulation in response to hypoxia. Acta Ophthalmol 94:592. https://doi.org/10.1111/aos.14021

    Article  CAS  Google Scholar 

  138. Chidlow G, Wood JPM, Graham M, Osborne NN (2005) Expression of monocarboxylate transporters in rat ocular tissues. Am J Physiol, Cell Physiol 288:C416–C428. https://doi.org/10.1152/ajpcell.00037.2004

    Article  CAS  Google Scholar 

  139. Jørstad ØK, Ødegaard EM, Heimdal KR, Kerty E (2018) Leber hereditary optic neuropathy caused by a mitochondrial DNA 10663T>C point mutation and its response to Idebenone treatment. J Neuroophthalmol 38:129–131. https://doi.org/10.1097/WNO.0000000000000598

    Article  PubMed  Google Scholar 

  140. Zhang J, Liu X, Liang X, Lu Y, Zhu L, Fu R, Ji Y, Fan W et al (2017) A novel ADOA-associated OPA1 mutation alters the mitochondrial function, membrane potential, ROS production and apoptosis. Sci Rep 7:5704. https://doi.org/10.1038/s41598-017-05571-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kong GYX, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100. https://doi.org/10.1097/IJG.0b013e318181284f

    Article  PubMed  Google Scholar 

  142. McElnea EM, Quill B, Docherty NG, Irnaten M, Siah WF, Clark AF, O'Brien CJ, Wallace DM (2011) Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis 17:1182–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ju W-K, Kim K-Y, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I et al (2008) Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci 49:4903–4911. https://doi.org/10.1167/iovs.07-1661

    Article  PubMed  Google Scholar 

  144. Lascaratos G, Garway-Heath DF, Willoughby CE, Chau KY, Schapira AH (2012) Mitochondrial dysfunction in glaucoma: understanding genetic influences. Mitochondrion 12:202–212. https://doi.org/10.1016/j.mito.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  145. Lefevere E, Toft-Kehler AK, Vohra R, Kolko M, Moons L, van Hove I (2017) Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 36:66–76. https://doi.org/10.1016/j.mito.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  146. Van Bergen NJ, Crowston JG, Craig JE et al (2015) Measurement of systemic mitochondrial function in advanced primary open-angle glaucoma and Leber hereditary optic neuropathy. PLoS One 10:e0140919. https://doi.org/10.1371/journal.pone.0140919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee S, Sheck L, Crowston JG, van Bergen N, O’Neill EC, O’Hare F, Kong YX, Chrysostomou V et al (2012) Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Invest Ophthalmol Vis Sci 53:2431–2437. https://doi.org/10.1167/iovs.12-9596

    Article  PubMed  Google Scholar 

  148. Webster KA (2003) Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 206:2911–2922. https://doi.org/10.1242/jeb.00516

    Article  CAS  PubMed  Google Scholar 

  149. Robinson BH, Ward J, Goodyer P, Baudet A (1986) Respiratory chain defects in the mitochondria of cultured skin fibroblasts from three patients with lacticacidemia. J Clin Invest 77:1422–1427. https://doi.org/10.1172/JCI112453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guymer C, Wood JP, Chidlow G, Casson RJ (2019) Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol 47:88–105. https://doi.org/10.1111/ceo.13336

    Article  PubMed  Google Scholar 

  151. Arend O, Remky A, Plange N, Kaup M, Schwartz B (2005) Fluorescein leakage of the optic disc in glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol 243:659–664. https://doi.org/10.1007/s00417-004-1092-7

    Article  PubMed  Google Scholar 

  152. Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 37:3300–3317. https://doi.org/10.1177/0271678X17722436

    Article  PubMed  PubMed Central  Google Scholar 

  153. Meier NF, Lee D-C, Sui X, Blair SN (2018) Physical activity, cardiorespiratory fitness, and incident glaucoma. Med Sci Sports Exerc 50:2253–2258. https://doi.org/10.1249/MSS.0000000000001692

    Article  PubMed  PubMed Central  Google Scholar 

  154. Williams PT (2009) Relationship of incident glaucoma versus physical activity and fitness in male runners. Med Sci Sports Exerc 41:1566–1572. https://doi.org/10.1249/MSS.0b013e31819e420f

    Article  PubMed  PubMed Central  Google Scholar 

  155. Passo MS, Goldberg L, Elliot DL, Van Buskirk EM (1991) Exercise training reduces intraocular pressure among subjects suspected of having glaucoma. Arch Ophthalmol 109:1096–1098

    Article  CAS  PubMed  Google Scholar 

  156. Qureshi IA (1996) Effects of exercise on intraocular pressure in physically fit subjects. Clin Exp Pharmacol Physiol 23:648–652

    Article  CAS  PubMed  Google Scholar 

  157. Chromiak JA, Abadie BR, Braswell RA, Koh YS, Chilek DR (2003) Resistance training exercises acutely reduce intraocular pressure in physically active men and women. J Strength Cond Res 17:715–720

    PubMed  Google Scholar 

  158. Dane S, Koçer I, Demirel H, Ucok K, Tan U (2006) Effect of acute submaximal exercise on intraocular pressure in athletes and sedentary subjects. Int J Neurosci 116:1223–1230. https://doi.org/10.1080/00207450500522501

    Article  PubMed  Google Scholar 

  159. Ramya CM, Nataraj SM, Rajalakshmi R, Smitha MC (2018) Changes in ocular perfusion pressure in response to short term isometric exercise in young adults. Niger J Physiol Sci 33:101–103

    CAS  PubMed  Google Scholar 

  160. Castro EFS, Mostarda CT, Rodrigues B, Moraes-Silva IC, Feriani DJ, de Angelis K, Irigoyen MC (2015) Exercise training prevents increased intraocular pressure and sympathetic vascular modulation in an experimental model of metabolic syndrome. Braz J Med Biol Res 48:332–338. https://doi.org/10.1590/1414-431X20144217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bakke EF, Hisdal J, Semb SO (2009) Intraocular pressure increases in parallel with systemic blood pressure during isometric exercise. Invest Ophthalmol Vis Sci 50:760–764. https://doi.org/10.1167/iovs.08-2508

    Article  PubMed  Google Scholar 

  162. Lin S-C, Wang SY, Pasquale LR, Singh K, Lin SC (2017) The relation between exercise and glaucoma in a South Korean population-based sample. PLoS One 12:e0171441. https://doi.org/10.1371/journal.pone.0171441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chrysostomou V, Kezic JM, Trounce IA, Crowston JG (2014) Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol Aging 35:1722–1725. https://doi.org/10.1016/j.neurobiolaging.2014.01.019

    Article  PubMed  Google Scholar 

  164. Chrysostomou V, Galic S, van Wijngaarden P, Trounce IA, Steinberg GR, Crowston JG (2016) Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway. Aging Cell 15:1082–1091. https://doi.org/10.1111/acel.12512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work is carried out as a part of the BRIDGE–Translational Excellence Programme (bridge.ku.dk) at the Faculty of Health and Medical Sciences, University of Copenhagen, funded by the Novo Nordisk Foundation (Grant agreement no. NNF18SA0034956).

Supplementary description of methods.

The human Müller cell line, MIO-M1, was cultured to 90% confluence and scraped off after treatment with 10 mM L-Lactate in the presence and absence of 6 mM glucose in the media (DMEM A1443001, Gibco). The cells were centrifuged at 550 g for 5 minutes at 4 °C. Supernatants were discarded and cells were lysed in radioimmune precipitation assay (RIPA) buffer (Sigma-Aldrich), which also included protease cocktail inhibitor 1 and 2 (Sigma-Aldrich). Protein lysates were centrifuged at 8000 g for 10 minutes at 4 °C. The samples containing 22 μg proteins were loaded onto gels to investigate protein expression of MCT-1 and GPR81 by the use of an MCT-1 antibody (cat no. AB3538P, Millipore) and GPR81 antibody (cat. no. SAB1300090, Sigma-Aldrich). The blots were pre- incubated for 1 hour with Tris-buffered saline (TBS) (20 mM Tris-HCl, 150 mM NaCl) containing 5% nonfat dry milk. Afterwards, the blots were incubated with a primary antibody against either MCT-1 (dilution 1:500) or GPR81 (dilution 1:200) in TBS 1% nonfat dry milk over night at 4 °C. The blots were washed in TBS and incubated with the secondary antibody goat anti- rabbit IgG alkaline phosphatase conjugated secondary antibody (Jackson ImmunoResearch, West Grove, PA, USA) followed by visualization using BCIP/NBT (5-bromo-4-chloro- 3-indoyl phosphate-nitroblue tetrazolium) substrate (Kirkegaard & Perry Laboratories, Gaithersburg, MD, USA). To ensure that equal amounts of protein were loaded in each lane, the membranes were incubated with GAPDH at dilution 1:1000 (Cell Signaling Technologies, Danvers, MA, USA). Bands were quantified by densitometry through the use of Fiji; ImageJ software (National Institutes of Health, Bethesda, MD, USA). The density of each band was normalized to its own GAPDH band.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Kolko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, R., Kolko, M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 57, 2021–2037 (2020). https://doi.org/10.1007/s12035-019-01863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01863-8

Keywords

Navigation