Skip to main content

Advertisement

Log in

Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Masel BE, DeWitt DS (2010) Traumatic brain injury: a disease process, not an event. J Neurotrauma 27:1529–1540. https://doi.org/10.1089/neu.2010.1358

    Article  PubMed  Google Scholar 

  2. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6:1307–1315. https://doi.org/10.1242/dmm.011585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qureshi AI, Tuhrim S, Broderick JP et al (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344:1450–1460. https://doi.org/10.1056/NEJM200105103441907

    Article  CAS  PubMed  Google Scholar 

  4. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373:1632–1644. https://doi.org/10.1016/S0140-6736(09)60371-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clark JF, Loftspring M, Wurster WL et al (2008) Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage. Acta Neurochir Suppl 105:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Qu Y, Chen-Roetling J, Benvenisti-Zarom L, Regan RF (2007) Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. J Neurosurg 106:428–435. https://doi.org/10.3171/jns.2007.106.3.428

    Article  PubMed  Google Scholar 

  7. Sadrzadeh SM, Graf E, Panter SS et al (1984) Hemoglobin. A biologic fenton reagent. J Biol Chem 259:14354–14356

    CAS  PubMed  Google Scholar 

  8. Finnie JW, Blumbergs PC (2002) Traumatic brain injury. Vet Pathol 39:679–689. https://doi.org/10.1354/vp.39-6-679

    Article  CAS  PubMed  Google Scholar 

  9. Cho H-H, Cahill CM, Vanderburg CR et al (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285:31217–31232. https://doi.org/10.1074/jbc.M110.149161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt O, Infanger M, Heyde C et al (2004) The role of neuroinflammation in traumatic brain injury. Eur J Trauma. https://doi.org/10.1007/s00068-004-1394-9

  11. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141. https://doi.org/10.1016/S0079-6123(06)61009-1

    Article  PubMed  Google Scholar 

  12. Thompson HJ, Hoover RC, Tkacs NC et al (2005) Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation. J Cereb Blood Flow Metab 25:163–176. https://doi.org/10.1038/sj.jcbfm.9600008

    Article  CAS  PubMed  Google Scholar 

  13. Groom R, Oakley PA (1997) Secondary brain injury: mechanisms and prevention. Curr Anaesth Crit Care 8:248–253. https://doi.org/10.1016/S0953-7112(97)80002-6

    Article  Google Scholar 

  14. Graham DI, Ford I, Adams JH et al (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52:346–350

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Babadjouni RM, Radwanski RE, Walcott BP et al (2017) Neuroprotective strategies following intraparenchymal hemorrhage. J Neurointerv Surg 9:1202–1207. https://doi.org/10.1136/neurintsurg-2017-013197

    Article  PubMed  Google Scholar 

  16. Koeppen AH, Michael SC, Li D et al (2008) The pathology of superficial siderosis of the central nervous system. Acta Neuropathol 116:371–382. https://doi.org/10.1007/s00401-008-0421-z

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174. https://doi.org/10.1016/S1474-4422(09)70013-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garton T, Keep RF, Hua Y, Xi G (2016) Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 1:172–184. https://doi.org/10.1136/svn-2016-000042

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thakkar M, Edelenbos J, Doré S (2019) Bilirubin and ischemic stroke: rendering the current paradigm to better understand the protective effects of bilirubin. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1440-y

    CAS  PubMed  Google Scholar 

  20. Mendez NV, Wharton JA, Leclerc JL et al (2013) Clinical implications of bilirubin-associated neuroprotection and neurotoxicity. Int J Clin Anesthesiol 1

  21. Lok J, Leung W, Murphy S et al (2011) Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl 111:63–69. https://doi.org/10.1007/978-3-7091-0693-8_11

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lorente L (2015) New prognostic biomarkers in patients with traumatic brain injury. Arch Trauma Res 4:e30165. https://doi.org/10.5812/atr.30165

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fang H, Wang P-F, Zhou Y et al (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27. https://doi.org/10.1186/1742-2094-10-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stein SC, Smith DH (2004) Coagulopathy in traumatic brain injury. Neurocrit Care 1:479–488. https://doi.org/10.1385/NCC:1:4:479

    Article  PubMed  Google Scholar 

  25. Morel N, Morel O, Petit L et al (2008) Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma 64:698–704. https://doi.org/10.1097/TA.0b013e31816493ad

    Article  PubMed  Google Scholar 

  26. Halpern CH, Reilly PM, Turtz AR, Stein SC (2008) Traumatic coagulopathy: the effect of brain injury. J Neurotrauma 25:997–1001. https://doi.org/10.1089/neu.2008.0548

    Article  PubMed  Google Scholar 

  27. Akopov S, Sercombe R, Seylaz J (1996) Cerebrovascular reactivity: role of endothelium/platelet/leukocyte interactions. Cerebrovasc Brain Metab Rev 8:11–94

    CAS  PubMed  Google Scholar 

  28. Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908. https://doi.org/10.1038/sj.jcbfm.9600403

    Article  CAS  PubMed  Google Scholar 

  29. Ishikawa M, Cooper D, Arumugam TV et al (2004) Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab 24:907–915. https://doi.org/10.1097/01.WCB.0000132690.96836.7F

    Article  CAS  PubMed  Google Scholar 

  30. Canolle B, Masmejean F, Melon C et al (2004) Glial soluble factors regulate the activity and expression of the neuronal glutamate transporter EAAC1: implication of cholesterol. J Neurochem 88:1521–1532. https://doi.org/10.1046/j.1471-4159.2003.02301.x

    Article  CAS  PubMed  Google Scholar 

  31. Min K-J, Yang M, Kim S-U et al (2006) Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci 26:1880–1887. https://doi.org/10.1523/JNEUROSCI.3696-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao X, Song S, Sun G et al (2009) Neuroprotective role of haptoglobin after intracerebral hemorrhage. J Neurosci 29:15819–15827. https://doi.org/10.1523/JNEUROSCI.3776-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sercombe R, Dinh YRT, Gomis P (2002) Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88:227–249

    CAS  PubMed  Google Scholar 

  34. Uemura Y, Sugimoto T, Okamoto S et al (1987) Changes of neuropeptide immunoreactivity in cerebrovascular nerve fibers after experimentally produced SAH. Immunohistochemical study in the dog. J Neurosurg 66:741–747. https://doi.org/10.3171/jns.1987.66.5.0741

    Article  CAS  PubMed  Google Scholar 

  35. Mayberg MR, Okada T, Bark DH (1990) The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage. J Neurosurg 72:626–633. https://doi.org/10.3171/jns.1990.72.4.0626

    Article  CAS  PubMed  Google Scholar 

  36. Michel-Monigadon D, Bonny C, Hirt L (2010) C-Jun N-terminal kinase pathway inhibition in intracerebral hemorrhage. Cerebrovasc Dis 29:564–570. https://doi.org/10.1159/000306643

    Article  CAS  PubMed  Google Scholar 

  37. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    CAS  PubMed  Google Scholar 

  38. Soares MP, Hamza I (2016) Macrophages and iron metabolism. Immunity 44:492–504. https://doi.org/10.1016/j.immuni.2016.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lutz HU, Bogdanova A (2013) Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 4:387. https://doi.org/10.3389/fphys.2013.00387

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee S-J, Park S-Y, Jung M-Y et al (2011) Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood 117:5215–5223. https://doi.org/10.1182/blood-2010-10-313239

    Article  CAS  PubMed  Google Scholar 

  41. Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95:2157–2163

    CAS  PubMed  Google Scholar 

  42. Kim S, Park S-Y, Kim S-Y et al (2012) Cross talk between engulfment receptors stabilin-2 and integrin αvβ5 orchestrates engulfment of phosphatidylserine-exposed erythrocytes. Mol Cell Biol 32:2698–2708. https://doi.org/10.1128/MCB.06743-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santarino IB, Viegas MS, Domingues NS et al (2017) Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis. Sci Rep 7:5812. https://doi.org/10.1038/s41598-017-05687-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Viegas MS, Estronca LMBB, Vieira OV (2012) Comparison of the kinetics of maturation of phagosomes containing apoptotic cells and IgG-opsonized particles. PLoS One 7:e48391. https://doi.org/10.1371/journal.pone.0048391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolb S, Vranckx R, Huisse MG et al (2007) The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells. J Pathol 212:249–259. https://doi.org/10.1002/path.2190

    Article  CAS  PubMed  Google Scholar 

  46. Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38:61–88. https://doi.org/10.1080/713609210

    Article  CAS  PubMed  Google Scholar 

  47. Kay MM (1975) Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci U S A 72:3521–3525

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez J, Malireddi RKS, Lu Q et al (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17:893–906. https://doi.org/10.1038/ncb3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Canadien V, Lam GY et al (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A 106:6226–6231. https://doi.org/10.1073/pnas.0811045106

    Article  PubMed  PubMed Central  Google Scholar 

  50. Silverstein RL, Asch AS, Nachman RL (1989) Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest 84:546–552. https://doi.org/10.1172/JCI114197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abumrad NA (2005) CD36 may determine our desire for dietary fats. J Clin Invest 115:2965–2967. https://doi.org/10.1172/JCI26955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Swerlick RA, Lee KH, Wick TM, Lawley TJ (1992) Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 148:78–83

    CAS  PubMed  Google Scholar 

  53. Abumrad NA, el-Maghrabi MR, Amri EZ, et al. (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665–17668

  54. Van Nieuwenhoven FA, Verstijnen CP, Abumrad NA et al (1995) Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun 207:747–752

    PubMed  Google Scholar 

  55. Clezardin P, Frappart L, Clerget M et al (1993) Expression of thrombospondin (TSP1) and its receptors (CD36 and CD51) in normal, hyperplastic, and neoplastic human breast. Cancer Res 53:1421–1430

    CAS  PubMed  Google Scholar 

  56. McGilvray ID, Serghides L, Kapus A et al (2000) Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96:3231–3240

    CAS  PubMed  Google Scholar 

  57. Jiménez B, Volpert OV, Crawford SE et al (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48. https://doi.org/10.1038/71517

    Article  PubMed  Google Scholar 

  58. El Khoury JB, Moore KJ, Means TK et al (2003) CD36 mediates the innate host response to beta-amyloid. J Exp Med 197:1657–1666. https://doi.org/10.1084/jem.20021546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Febbraio M, Podrez EA, Smith JD et al (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056. https://doi.org/10.1172/JCI9259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rahaman SO, Lennon DJ, Febbraio M et al (2006) A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 4:211–221. https://doi.org/10.1016/j.cmet.2006.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stewart CR, Stuart LM, Wilkinson K et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161. https://doi.org/10.1038/ni.1836

    Article  CAS  PubMed  Google Scholar 

  62. Cho S (2012) CD36 as a therapeutic target for endothelial dysfunction in stroke. Curr Pharm Des 18:3721–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fang H, Chen J, Lin S et al (2014) CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J Immunol 192:5984–5992. https://doi.org/10.4049/jimmunol.1400054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao X, Grotta J, Gonzales N, Aronowski J (2009) Hematoma resolution as a therapeutic target. Stroke 40:S92–S94

    CAS  PubMed  Google Scholar 

  65. Deuel JW, Vallelian F, Schaer CA et al (2015) Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic Biol Med 89:931–943. https://doi.org/10.1016/j.freeradbiomed.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  66. Wagner KR, Sharp FR, Ardizzone TD et al (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652. https://doi.org/10.1097/01.WCB.0000073905.87928.6D

    Article  CAS  PubMed  Google Scholar 

  67. Kosaka H, Uozumi M, Tyuma I (1989) The interaction between nitrogen oxides and hemoglobin and endothelium-derived relaxing factor. Free Radic Biol Med 7:653–658

    CAS  PubMed  Google Scholar 

  68. Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187. https://doi.org/10.3389/fphys.2015.00187

    Article  PubMed  PubMed Central  Google Scholar 

  69. Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. https://doi.org/10.1006/bbrc.1997.6943

    Article  CAS  PubMed  Google Scholar 

  70. Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156. https://doi.org/10.1038/sj.onc.1202237

    Article  CAS  PubMed  Google Scholar 

  71. Friling RS, Bensimon A, Tichauer Y, Daniel V (1990) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci U S A 87:6258–6262

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266:11632–11639

    CAS  PubMed  Google Scholar 

  73. Ishii T, Itoh K, Ruiz E et al (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94:609–616. https://doi.org/10.1161/01.RES.0000119171.44657.45

    Article  CAS  PubMed  Google Scholar 

  74. Thimmulappa RK, Mai KH, Srisuma S et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    CAS  PubMed  Google Scholar 

  75. Alam J, Stewart D, Touchard C et al (1999) Nrf2, a cap’n’collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274:26071–26078. https://doi.org/10.1074/jbc.274.37.26071

    Article  CAS  PubMed  Google Scholar 

  76. Handa Y, Weir BK, Nosko M et al (1987) The effect of timing of clot removal on chronic vasospasm in a primate model. J Neurosurg 67:558–564. https://doi.org/10.3171/jns.1987.67.4.0558

    Article  CAS  PubMed  Google Scholar 

  77. Ibrahim GM, Vachhrajani S, Ilodigwe D et al (2012) Method of aneurysm treatment does not affect clot clearance after aneurysmal subarachnoid hemorrhage. Neurosurgery 70:102–109; discussion 109. https://doi.org/10.1227/NEU.0b013e31822e5a8e

    Article  PubMed  Google Scholar 

  78. Kramer AH, Fletcher JJ (2011) Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit Care 14:489–499. https://doi.org/10.1007/s12028-010-9429-z

    Article  PubMed  Google Scholar 

  79. Etminan N, Beseoglu K, Eicker SO et al (2013) Prospective, randomized, open-label phase II trial on concomitant intraventricular fibrinolysis and low-frequency rotation after severe subarachnoid hemorrhage. Stroke 44:2162–2168. https://doi.org/10.1161/STROKEAHA.113.001790

    Article  CAS  PubMed  Google Scholar 

  80. Kramer AH, Jenne CN, Zygun DA et al (2015) Intraventricular fibrinolysis with tissue plasminogen activator is associated with transient cerebrospinal fluid inflammation: a randomized controlled trial. J Cereb Blood Flow Metab 35:1241–1248. https://doi.org/10.1038/jcbfm.2015.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klimo P, Kestle JRW, MacDonald JD, Schmidt RH (2004) Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg 100:215–224. https://doi.org/10.3171/jns.2004.100.2.0215

    Article  PubMed  Google Scholar 

  82. Kwon OY, Kim Y-J, Kim YJ et al (2008) The utility and benefits of external lumbar CSF drainage after endovascular coiling on aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc 43:281–287. https://doi.org/10.3340/jkns.2008.43.6.281

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sun C, Du H, Yin L et al (2014) Choice for the removal of bloody cerebrospinal fluid in postcoiling aneurysmal subarachnoid hemorrhage: external ventricular drainage or lumbar drainage? Turk Neurosurg 24:737–744. https://doi.org/10.5137/1019-5149.JTN.9837-13.2

    Article  PubMed  Google Scholar 

  84. Al-Tamimi YZ, Bhargava D, Feltbower RG et al (2012) Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS). Stroke 43:677–682. https://doi.org/10.1161/STROKEAHA.111.625731

    Article  PubMed  Google Scholar 

  85. Bardutzky J, Witsch J, Jüttler E et al (2011) EARLYDRAIN- outcome after early lumbar CSF-drainage in aneurysmal subarachnoid hemorrhage: study protocol for a randomized controlled trial. Trials 12:203. https://doi.org/10.1186/1745-6215-12-203

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lee M-Y, Kim SY, Choi J-S et al (2002) Upregulation of haptoglobin in reactive astrocytes after transient forebrain ischemia in rats. J Cereb Blood Flow Metab 22:1176–1180. https://doi.org/10.1097/01.wcb.0000037989.07114.d1

    Article  CAS  PubMed  Google Scholar 

  87. Kumar DM, Thota B, Shinde SV et al (2010) Proteomic identification of haptoglobin α2 as a glioblastoma serum biomarker: implications in cancer cell migration and tumor growth. J Proteome Res 9:5557–5567. https://doi.org/10.1021/pr1001737

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez DJ, Armstrong L, Aguilar R et al (2001) Haptoglobin gene expression in human glioblastoma cell lines. Neurosci Lett 303:181–184

    CAS  PubMed  Google Scholar 

  89. Galea J, Cruickshank G, Teeling JL et al (2012) The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem 121:785–792. https://doi.org/10.1111/j.1471-4159.2012.07716.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Connor DE, Chaitanya GV, Chittiboina P et al (2017) Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. Pathophysiology 24:169–183. https://doi.org/10.1016/j.pathophys.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  91. Madsen M, Møller HJ, Nielsen MJ et al (2004) Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region. J Biol Chem 279:51561–51567. https://doi.org/10.1074/jbc.M409629200

    Article  CAS  PubMed  Google Scholar 

  92. Andersen CBF, Torvund-Jensen M, Nielsen MJ et al (2012) Structure of the haptoglobin-haemoglobin complex. Nature 489:456–459. https://doi.org/10.1038/nature11369

    Article  CAS  PubMed  Google Scholar 

  93. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK (2013) The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev 2013:523652. https://doi.org/10.1155/2013/523652

    Article  CAS  Google Scholar 

  94. Etzerodt A, Kjolby M, Nielsen MJ et al (2013) Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid Redox Signal 18:2254–2263. https://doi.org/10.1089/ars.2012.4605

    Article  CAS  PubMed  Google Scholar 

  95. Boretti FS, Buehler PW, D’Agnillo F et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Invest 119:2271–2280. https://doi.org/10.1172/JCI39115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cooper CE, Schaer DJ, Buehler PW et al (2013) Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxid Redox Signal 18:2264–2273. https://doi.org/10.1089/ars.2012.4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Banerjee S, Jia Y, Siburt CJP et al (2012) Haptoglobin alters oxygenation and oxidation of hemoglobin and decreases propagation of peroxide-induced oxidative reactions. Free Radic Biol Med 53:1317–1326. https://doi.org/10.1016/j.freeradbiomed.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  98. Buehler PW, Abraham B, Vallelian F et al (2009) Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood 113:2578–2586. https://doi.org/10.1182/blood-2008-08-174466

    Article  CAS  PubMed  Google Scholar 

  99. Pluta RM (2006) Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Neurol Res 28:730–737. https://doi.org/10.1179/016164106X152052

    Article  CAS  PubMed  Google Scholar 

  100. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  101. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB (2000) Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab 20:604–611. https://doi.org/10.1097/00004647-200003000-00018

    Article  CAS  PubMed  Google Scholar 

  102. Azarov I, He X, Jeffers A et al (2008) Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin. Nitric Oxide 18:296–302. https://doi.org/10.1016/j.niox.2008.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Faraci FM, Brian JE (1994) Nitric oxide and the cerebral circulation. Stroke 25:692–703

    CAS  PubMed  Google Scholar 

  104. Sun B-L, Zhang S-M, Xia Z-L et al (2003) L-arginine improves cerebral blood perfusion and vasomotion of microvessels following subarachnoid hemorrhage in rats. Clin Hemorheol Microcirc 29:391–400

    CAS  PubMed  Google Scholar 

  105. Sabri M, Ai J, Lass E et al (2013) Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 33:1008–1014. https://doi.org/10.1038/jcbfm.2013.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pluta RM, Dejam A, Grimes G et al (2005) Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 293:1477–1484. https://doi.org/10.1001/jama.293.12.1477

    Article  CAS  PubMed  Google Scholar 

  107. Gabikian P, Clatterbuck RE, Eberhart CG et al (2002) Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke 33:2681–2686

    PubMed  Google Scholar 

  108. Pradilla G, Thai Q-A, Legnani FG et al (2004) Delayed intracranial delivery of a nitric oxide donor from a controlled-release polymer prevents experimental cerebral vasospasm in rabbits. Neurosurgery 55:1393–1399 discussion 1399

    PubMed  Google Scholar 

  109. Schaer CA, Deuel JW, Schildknecht D et al (2016) Haptoglobin preserves vascular nitric oxide signaling during hemolysis. Am J Respir Crit Care Med 193:1111–1122. https://doi.org/10.1164/rccm.201510-2058OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Quaye IK (2008) Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 102:735–742. https://doi.org/10.1016/j.trstmh.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  111. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42:1589–1600

    CAS  PubMed  Google Scholar 

  112. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786. https://doi.org/10.1161/STROKEAHA.110.596718

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zheng H, Chen C, Zhang J, Hu Z (2016) Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 42:155–169. https://doi.org/10.1159/000445170

    Article  PubMed  Google Scholar 

  114. Askenase MH, Sansing LH (2016) Stages of the inflammatory response in pathology and tissue repair after intracerebral hemorrhage. Semin Neurol 36:288–297. https://doi.org/10.1055/s-0036-1582132

    Article  PubMed  PubMed Central  Google Scholar 

  115. Arima H, Wang JG, Huang Y et al (2009) Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology 73:1963–1968. https://doi.org/10.1212/WNL.0b013e3181c55ed3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Murthy SB, Levy AP, Duckworth J et al (2015) Presence of haptoglobin-2 allele is associated with worse functional outcomes after spontaneous intracerebral hemorrhage. World Neurosurg 83:583–587. https://doi.org/10.1016/j.wneu.2014.12.013

    Article  PubMed  Google Scholar 

  117. Urday S, Kimberly WT, Beslow LA et al (2015) Targeting secondary injury in intracerebral haemorrhage--perihaematomal oedema. Nat Rev Neurol 11:111–122. https://doi.org/10.1038/nrneurol.2014.264

    Article  PubMed  Google Scholar 

  118. Duan X, Wen Z, Shen H et al (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med Cell Longev 2016:1203285. https://doi.org/10.1155/2016/1203285

    Article  CAS  Google Scholar 

  119. Ziai WC (2013) Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke 44:S74–S78. https://doi.org/10.1161/STROKEAHA.111.000662

    Article  PubMed  Google Scholar 

  120. Ijäs P, Saksi J, Soinne L et al (2013) Haptoglobin 2 allele associates with unstable carotid plaque and major cardiovascular events. Atherosclerosis 230:228–234. https://doi.org/10.1016/j.atherosclerosis.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  121. Black JA, Dixon GH (1968) Amino-acid sequence of alpha chains of human haptoglobins. Nature 218:736–741

    CAS  PubMed  Google Scholar 

  122. Maeda N, Yang F, Barnett DR et al (1984) Duplication within the haptoglobin Hp2 gene. Nature 309:131–135

    CAS  PubMed  Google Scholar 

  123. Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114:764–771. https://doi.org/10.1182/blood-2009-01-198309

    Article  CAS  PubMed  Google Scholar 

  124. Levy AP, Roguin A, Hochberg I et al (2000) Haptoglobin phenotype and vascular complications in patients with diabetes. N Engl J Med 343:969–970. https://doi.org/10.1056/NEJM200009283431313

    Article  CAS  PubMed  Google Scholar 

  125. Vormittag R, Vukovich T, Mannhalter C et al (2005) Haptoglobin phenotype 2-2 as a potentially new risk factor for spontaneous venous thromboembolism. Haematologica 90:1557–1561

    CAS  PubMed  Google Scholar 

  126. Ohnishi H, Iihara K, Kaku Y et al (2013) Haptoglobin phenotype predicts cerebral vasospasm and clinical deterioration after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 22:520–526. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.02.005

    Article  PubMed  Google Scholar 

  127. Costacou T, Ferrell RE, Orchard TJ (2008) Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes. Diabetes 57:1702–1706. https://doi.org/10.2337/db08-0095

    Article  CAS  PubMed  Google Scholar 

  128. Levy AP, Hochberg I, Jablonski K et al (2002) Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the Strong Heart Study. J Am Coll Cardiol 40:1984–1990

    PubMed  Google Scholar 

  129. Borsody M, Burke A, Coplin W et al (2006) Haptoglobin and the development of cerebral artery vasospasm after subarachnoid hemorrhage. Neurology 66:634–640. https://doi.org/10.1212/01.wnl.0000200781.62172.1d

    Article  CAS  PubMed  Google Scholar 

  130. Leclerc JL, Blackburn S, Neal D et al (2015) Haptoglobin phenotype predicts the development of focal and global cerebral vasospasm and may influence outcomes after aneurysmal subarachnoid hemorrhage. Proc Natl Acad Sci U S A 112:1155–1160. https://doi.org/10.1073/pnas.1412833112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chaichana KL, Levy AP, Miller-Lotan R et al (2007) Haptoglobin 2-2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke 38:3266–3271. https://doi.org/10.1161/STROKEAHA.107.490003

    Article  CAS  PubMed  Google Scholar 

  132. Murthy SB, Caplan J, Levy AP et al (2016) Haptoglobin 2-2 genotype is associated with cerebral salt wasting syndrome in aneurysmal subarachnoid hemorrhage. Neurosurgery 78:71–76. https://doi.org/10.1227/NEU.0000000000001000

    Article  PubMed  Google Scholar 

  133. Kantor E, Bayır H, Ren D et al (2014) Haptoglobin genotype and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 120:386–390. https://doi.org/10.3171/2013.10.JNS13219

    Article  PubMed  Google Scholar 

  134. Mocco J, Ransom ER, Komotar RJ et al (2006) Racial differences in cerebral vasospasm: a systematic review of the literature. Neurosurgery 58:305–314. https://doi.org/10.1227/01.NEU.0000195009.02412.E8

    Article  CAS  PubMed  Google Scholar 

  135. Nonaka T, Watanabe S, Chigasaki H et al (1979) Etiology and treatment of vasospasm following subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 19:53–60

    CAS  Google Scholar 

  136. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63. https://doi.org/10.1016/S1474-4422(05)70283-0

    Article  PubMed  Google Scholar 

  137. Yang S, Ma Y, Liu Y et al (2013) Elevated serum haptoglobin after traumatic brain injury is synthesized mainly in liver. J Neurosci Res 91:230–239. https://doi.org/10.1002/jnr.23159

    Article  CAS  PubMed  Google Scholar 

  138. Conti A, Sanchez-Ruiz Y, Bachi A et al (2004) Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. J Neurotrauma 21:854–863. https://doi.org/10.1089/0897715041526212

    Article  PubMed  Google Scholar 

  139. Gao W-M, Chadha MS, Berger RP et al (2007) A gel-based proteomic comparison of human cerebrospinal fluid between inflicted and non-inflicted pediatric traumatic brain injury. J Neurotrauma 24:43–53. https://doi.org/10.1089/neu.2006.0061

    Article  PubMed  Google Scholar 

  140. Panter SS, Sadrzadeh SM, Hallaway PE et al (1985) Hypohaptoglobinemia associated with familial epilepsy. J Exp Med 161:748–754

    CAS  PubMed  Google Scholar 

  141. Saccucci P, Verdecchia M, Piciullo A et al (2004) Convulsive disorder and genetic polymorphism. Association of idiopathic generalized epilepsy with haptoglobin polymorphism. Neurogenetics 5:245–248. https://doi.org/10.1007/s10048-004-0192-1

    Article  CAS  PubMed  Google Scholar 

  142. Anderson GD, Temkin NR, Dikmen SS et al (2009) Haptoglobin phenotype and apolipoprotein E polymorphism: relationship to posttraumatic seizures and neuropsychological functioning after traumatic brain injury. Epilepsy Behav 16:501–506. https://doi.org/10.1016/j.yebeh.2009.08.025

    Article  PubMed  PubMed Central  Google Scholar 

  143. Auer L, Petek W (1978) Serum haptoglobulin changes in patients with severe isolated head injury. Acta Neurochir 42:229–234

    CAS  PubMed  Google Scholar 

  144. Mansoor O, Cayol M, Gachon P et al (1997) Albumin and fibrinogen syntheses increase while muscle protein synthesis decreases in head-injured patients. Am J Physiol Endocrinol Metab 273:E898–E902. https://doi.org/10.1152/ajpendo.1997.273.5.E898

    Article  CAS  Google Scholar 

  145. Hergenroeder G, Redell JB, Moore AN et al (2008) Identification of serum biomarkers in brain-injured adults: potential for predicting elevated intracranial pressure. J Neurotrauma 25:79–93. https://doi.org/10.1089/neu.2007.0386

    Article  PubMed  Google Scholar 

  146. Schaer CA, Deuel JW, Bittermann AG et al (2013) Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ 20:1569–1579. https://doi.org/10.1038/cdd.2013.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schaer DJ, Schaer CA, Buehler PW et al (2006) CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107:373–380. https://doi.org/10.1182/blood-2005-03-1014

    Article  CAS  PubMed  Google Scholar 

  148. Subramanian K, Du R, Tan NS et al (2013) CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms. J Immunol 190:5267–5278. https://doi.org/10.4049/jimmunol.1202648

    Article  CAS  PubMed  Google Scholar 

  149. Xie W-J, Yu H-Q, Zhang Y et al (2016) CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage. Neural Regen Res 11:1122–1127. https://doi.org/10.4103/1673-5374.187047

    Article  PubMed  PubMed Central  Google Scholar 

  150. Etzerodt A, Berg RMG, Plovsing RR et al (2017) Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of “soluble CD163” in plasma. Sci Rep 7:40286. https://doi.org/10.1038/srep40286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Møller HJ (2012) Soluble CD163. Scand J Clin Lab Invest 72:1–13. https://doi.org/10.3109/00365513.2011.626868

    Article  CAS  PubMed  Google Scholar 

  152. Etzerodt A, Maniecki MB, Møller K et al (2010) Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J Leukoc Biol 88:1201–1205. https://doi.org/10.1189/jlb.0410235

    Article  CAS  PubMed  Google Scholar 

  153. Chen-Roetling J, Regan RF (2016) Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J Neurochem 139:586–595. https://doi.org/10.1111/jnc.13720

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Holfelder K, Schittenhelm J, Trautmann K et al (2011) De novo expression of the hemoglobin scavenger receptor CD163 by activated microglia is not associated with hemorrhages in human brain lesions. Histol Histopathol 26:1007–1017. https://doi.org/10.14670/HH-26.1007

    Article  CAS  PubMed  Google Scholar 

  155. Zhang Z, Zhang Z-Y, Wu Y, Schluesener HJ (2012) Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Res 1461:102–110. https://doi.org/10.1016/j.brainres.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  156. Chang EF, Claus CP, Vreman HJ et al (2005) Heme regulation in traumatic brain injury: relevance to the adult and developing brain. J Cereb Blood Flow Metab 25:1401–1417. https://doi.org/10.1038/sj.jcbfm.9600147

    Article  CAS  PubMed  Google Scholar 

  157. Dutra FF, Bozza MT (2014) Heme on innate immunity and inflammation. Front Pharmacol 5:115. https://doi.org/10.3389/fphar.2014.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT (2014) Innate sensing of malaria parasites. Nat Rev Immunol 14:744–757. https://doi.org/10.1038/nri3742

    Article  CAS  PubMed  Google Scholar 

  159. Figueiredo RT, Fernandez PL, Mourao-Sa DS et al (2007) Characterization of heme as activator of Toll-like receptor 4. J Biol Chem 282:20221–20229. https://doi.org/10.1074/jbc.M610737200

    Article  CAS  PubMed  Google Scholar 

  160. Greenhalgh AD, Brough D, Robinson EM et al (2012) Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 5:823–833. https://doi.org/10.1242/dmm.008557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Murray KN, Parry-Jones AR, Allan SM (2015) Interleukin-1 and acute brain injury. Front Cell Neurosci 9:18. https://doi.org/10.3389/fncel.2015.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galea J, Ogungbenro K, Hulme S et al (2011) Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab 31:439–447. https://doi.org/10.1038/jcbfm.2010.103

    Article  CAS  PubMed  Google Scholar 

  163. Galea J, Ogungbenro K, Hulme S et al (2018) Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid hemorrhage: results of the Subcutaneous Interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg 128:515–523. https://doi.org/10.3171/2016.9.JNS16615

    Article  CAS  PubMed  Google Scholar 

  164. Chakraborty A, Tannenbaum S, Rordorf C et al (2012) Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin Pharmacokinet 51:e1–e18. https://doi.org/10.2165/11599820-000000000-00000

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Brough D, Tyrrell PJ, Allan SM (2011) Regulation of interleukin-1 in acute brain injury. Trends Pharmacol Sci 32:617–622. https://doi.org/10.1016/j.tips.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  166. Ross J, Brough D, Gibson RM et al (2007) A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat. Neuropharmacology 53:638–642. https://doi.org/10.1016/j.neuropharm.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  167. Wu B, Ma Q, Khatibi N et al (2010) Ac-YVAD-CMK decreases blood-brain barrier degradation by inhibiting caspase-1 activation of interleukin-1β in intracerebral hemorrhage mouse model. Transl Stroke Res 1:57–64. https://doi.org/10.1007/s12975-009-0002-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang G, Hu R, Zhang C et al (2016) A combination of serum iron, ferritin and transferrin predicts outcome in patients with intracerebral hemorrhage. Sci Rep 6:21970. https://doi.org/10.1038/srep21970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Castillo J, Dávalos A, Alvarez-Sabín J et al (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58:624–629

    CAS  PubMed  Google Scholar 

  171. Gao M, Monian P, Quadri N et al (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu Y, Wang W, Li Y et al (2015) The 5-lipoxygenase inhibitor Zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull 38:1234–1239. https://doi.org/10.1248/bpb.b15-00048

    Article  CAS  PubMed  Google Scholar 

  173. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  174. Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16:689–697. https://doi.org/10.1038/ni.3206

    Article  CAS  PubMed  Google Scholar 

  175. Kearney CJ, Cullen SP, Tynan GA et al (2015) Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 22:1313–1327. https://doi.org/10.1038/cdd.2014.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Shen H, Liu C, Zhang D et al (2017) Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis 8:e2641. https://doi.org/10.1038/cddis.2017.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Laird MD, Wakade C, Alleyne CH, Dhandapani KM (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med 45:1103–1114. https://doi.org/10.1016/j.freeradbiomed.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  178. King MD, Whitaker-Lea WA, Campbell JM et al (2014) Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int J Cell Biol 2014:495817. https://doi.org/10.1155/2014/495817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. You Z, Savitz SI, Yang J et al (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:1564–1573. https://doi.org/10.1038/jcbfm.2008.44

    Article  CAS  PubMed  Google Scholar 

  180. Tolosano E, Hirsch E, Patrucco E et al (1999) Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–3914

    CAS  PubMed  Google Scholar 

  181. Tolosano E, Fagoonee S, Morello N et al (2010) Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 12:305–320. https://doi.org/10.1089/ars.2009.2787

    Article  CAS  PubMed  Google Scholar 

  182. Dong B, Cai M, Fang Z et al (2013) Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia. BMC Neurosci 14:58. https://doi.org/10.1186/1471-2202-14-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang P, Manaenko A, Xu F et al (2016) Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice model. Exp Neurol 283:157–164. https://doi.org/10.1016/j.expneurol.2016.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Leclerc JL, Santiago-Moreno J, Dang A et al (2018) Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cereb Blood Flow Metab 38:1032–1046. https://doi.org/10.1177/0271678X16679170

    Article  CAS  PubMed  Google Scholar 

  185. Chen L, Zhang X, Chen-Roetling J, Regan RF (2011) Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. J Neurosurg 114:1159–1167. https://doi.org/10.3171/2010.10.JNS10861

    Article  CAS  PubMed  Google Scholar 

  186. Ma B, Day JP, Phillips H et al (2016) Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation 13:26. https://doi.org/10.1186/s12974-016-0490-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hahl P, Davis T, Washburn C et al (2013) Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J Neurochem 125:89–101. https://doi.org/10.1111/jnc.12165

    Article  CAS  PubMed  Google Scholar 

  188. Garland P, Durnford AJ, Okemefuna AI et al (2016) Heme-hemopexin scavenging is active in the brain and associates with outcome after subarachnoid hemorrhage. Stroke 47:872–876. https://doi.org/10.1161/STROKEAHA.115.011956

    Article  CAS  PubMed  Google Scholar 

  189. Hanrieder J, Wetterhall M, Enblad P et al (2009) Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods 177:469–478

    CAS  PubMed  Google Scholar 

  190. Hvidberg V, Maniecki MB, Jacobsen C et al (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood 106:2572–2579. https://doi.org/10.1182/blood-2005-03-1185

    Article  CAS  PubMed  Google Scholar 

  191. Brifault C, Gilder AS, Laudati E et al (2017) Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation. J Biol Chem 292:18699–18712

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Moestrup SK, Gliemann J, Pallesen G (1992) Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res 269:375–382. https://doi.org/10.1007/BF00353892

    Article  CAS  PubMed  Google Scholar 

  193. Wang J, Doré S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130:1643–1652. https://doi.org/10.1093/brain/awm095

    Article  PubMed  Google Scholar 

  194. Naito Y, Takagi T, Higashimura Y (2014) Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophys 564:83–88. https://doi.org/10.1016/j.abb.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  195. Ewing JF, Haber SN, Maines MD (1992) Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein. J Neurochem 58:1140–1149

    CAS  PubMed  Google Scholar 

  196. Shibahara S, Müller R, Taguchi H, Yoshida T (1985) Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci U S A 82:7865–7869

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Rotenberg MO, Maines MD (1990) Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J Biol Chem 265:7501–7506

    CAS  PubMed  Google Scholar 

  198. Ewing JF, Maines MD (1997) Histochemical localization of heme oxygenase-2 protein and mRNA expression in rat brain. Brain Res Brain Res Protoc 1:165–174

    CAS  PubMed  Google Scholar 

  199. Leonardo CC, Doré S (2011) Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr Neurosci 14:226–236. https://doi.org/10.1179/1476830511Y.0000000013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fukuda K, Panter SS, Sharp FR, Noble LJ (1995) Induction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci Lett 199:127–130

    CAS  PubMed  Google Scholar 

  201. Yachie A, Niida Y, Wada T et al (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103:129–135. https://doi.org/10.1172/JCI4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yamada N, Yamaya M, Okinaga S et al (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 66:187–195

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Guenegou A (2006) Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France. J Med Genet 43:e43–e43. https://doi.org/10.1136/jmg.2005.039743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Siedlinski M, van Diemen CC, Postma DS, Boezen HM (2008) Heme oxygenase 1 variations and lung function decline in smokers: proof of replication. J Med Genet 45:400–400. https://doi.org/10.1136/jmg.2008.058123

    Article  CAS  PubMed  Google Scholar 

  205. Schallner N, Pandit R, LeBlanc R et al (2015) Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 125:2609–2625. https://doi.org/10.1172/JCI78443

    Article  PubMed  PubMed Central  Google Scholar 

  206. Chen K, Gunter K, Maines MD (2000) Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 75:304–313. https://doi.org/10.1046/j.1471-4159.2000.0750304.x

    Article  CAS  PubMed  Google Scholar 

  207. Doré S, Goto S, Sampei K et al (2000) Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience 99:587–592. https://doi.org/10.1016/S0306-4522(00)00216-5

    Article  PubMed  Google Scholar 

  208. Wagener FA, Eggert A, Boerman OC et al (2001) Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98:1802–1811

    CAS  PubMed  Google Scholar 

  209. Vachharajani TJ, Work J, Issekutz AC, Granger DN (2000) Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol 278:H1613–H1617. https://doi.org/10.1152/ajpheart.2000.278.5.H1613

    Article  CAS  PubMed  Google Scholar 

  210. Doré S, Takahashi M, Ferris CD et al (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 96:2445–2450

    PubMed  PubMed Central  Google Scholar 

  211. Chang EF, Wong RJ, Vreman HJ et al (2003) Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 23:3689–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  213. Kong Y, Le Y (2011) Toll-like receptors in inflammation of the central nervous system. Int Immunopharmacol 11:1407–1414. https://doi.org/10.1016/j.intimp.2011.04.025

    Article  CAS  PubMed  Google Scholar 

  214. Kwon MS, Woo SK, Kurland DB et al (2015) Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 16:5028–5046. https://doi.org/10.3390/ijms16035028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Beutler BA (2009) TLRs and innate immunity. Blood 113:1399–1407. https://doi.org/10.1182/blood-2008-07-019307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhu J, Mohan C (2010) Toll-like receptor signaling pathways--therapeutic opportunities. Mediat Inflamm 2010:781235. https://doi.org/10.1155/2010/781235

    Article  CAS  Google Scholar 

  217. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006049

    PubMed  PubMed Central  Google Scholar 

  218. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Sci Signal 3:cm1. doi: https://doi.org/10.1126/scisignal.3105cm1

    PubMed  Google Scholar 

  219. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391

    Article  CAS  PubMed  Google Scholar 

  220. Schneider UC, Davids A-M, Brandenburg S et al (2015) Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol 130:215–231. https://doi.org/10.1007/s00401-015-1440-1

    Article  PubMed  Google Scholar 

  221. Hanafy KA (2013) The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 10:83. https://doi.org/10.1186/1742-2094-10-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Moraes L, Grille S, Morelli P et al (2015) Immune cells subpopulations in cerebrospinal fluid and peripheral blood of patients with aneurysmal subarachnoid hemorrhage. Springerplus 4:195. https://doi.org/10.1186/s40064-015-0970-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Provencio JJ, Fu X, Siu A et al (2010) CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care 12:244–251. https://doi.org/10.1007/s12028-009-9308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Provencio JJ, Swank V, Lu H et al (2016) Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain Behav Immun 54:233–242. https://doi.org/10.1016/j.bbi.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lin S, Yin Q, Zhong Q et al (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46. https://doi.org/10.1186/1742-2094-9-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Teng W, Wang L, Xue W (2009) Guan C (2009) activation of TLR4-mediated NF. Mediat Inflamm

  227. Ma CX, Yin WN, Cai BW et al (2009) WITHDRAWN: Activation of TLR4/NF-kappaB signaling pathway in early brain injury after subarachnoid hemorrhage. Neurol Res

  228. Rodríguez-Yáñez M, Brea D, Arias S et al (2012) Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. J Neuroimmunol 247:75–80. https://doi.org/10.1016/j.jneuroim.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  229. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    CAS  PubMed  Google Scholar 

  230. Yang Q-W, Lu F-L, Zhou Y et al (2011) HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent toll-like receptor 4 signaling. J Cereb Blood Flow Metab 31:593–605. https://doi.org/10.1038/jcbfm.2010.129

    Article  CAS  PubMed  Google Scholar 

  231. Ohashi K, Burkart V, Flohé S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    CAS  PubMed  Google Scholar 

  232. Vabulas RM, Ahmad-Nejad P, Ghose S et al (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112. https://doi.org/10.1074/jbc.M111204200

    Article  CAS  PubMed  Google Scholar 

  233. Taylor KR, Trowbridge JM, Rudisill JA et al (2004) Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 279:17079–17084. https://doi.org/10.1074/jbc.M310859200

    Article  CAS  PubMed  Google Scholar 

  234. Termeer C, Benedix F, Sleeman J et al (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Dennery PA, Visner G, Weng Y i-H, et al. (2003) Resistance to hyperoxia with heme oxygenase-1 disruption: role of iron. Free Radic Biol Med 34:124–133

    CAS  PubMed  Google Scholar 

  236. Lovell MA, Robertson JD, Teesdale WJ et al (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52. https://doi.org/10.1016/S0022-510X(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  237. Ben-Shachar D, Riederer P, Youdim MB (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57:1609–1614

    CAS  PubMed  Google Scholar 

  238. Liu H-D, Li W, Chen Z-R et al (2013) Increased expression of ferritin in cerebral cortex after human traumatic brain injury. Neurol Sci 34:1173–1180. https://doi.org/10.1007/s10072-012-1214-7

    Article  PubMed  Google Scholar 

  239. Nisenbaum EJ, Novikov DS, Lui YW (2014) The presence and role of iron in mild traumatic brain injury: an imaging perspective. J Neurotrauma 31:301–307. https://doi.org/10.1089/neu.2013.3102

    Article  PubMed  PubMed Central  Google Scholar 

  240. Hua Y, Nakamura T, Keep RF et al (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg 104:305–312. https://doi.org/10.3171/jns.2006.104.2.305

    Article  CAS  PubMed  Google Scholar 

  241. Nakamura T, Keep RF, Hua Y et al (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100:672–678. https://doi.org/10.3171/jns.2004.100.4.0672

    Article  CAS  PubMed  Google Scholar 

  242. Selim M, Yeatts S, Goldstein JN et al (2011) Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42:3067–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Yeatts SD, Palesch YY, Moy CS, Selim M (2013) High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care 19:257–266. https://doi.org/10.1007/s12028-013-9861-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen S, Yang Q, Chen G, Zhang JH (2015) An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res 6:4–8. https://doi.org/10.1007/s12975-014-0384-4

    Article  CAS  PubMed  Google Scholar 

  245. Yu Y, Zhao W, Zhu C et al (2015) The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS One 10:e0122371. https://doi.org/10.1371/journal.pone.0122371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Khalaf S, Ahmad AS, Chamara KVDR, Dore S (2019) Unique properties associated with the brain penetrant iron chelator HBED reveal remarkable beneficial effects after brain trauma. J Neurotrauma 36:43–53. https://doi.org/10.1089/neu.2017.5617

    Article  Google Scholar 

  247. Juckett MB, Balla J, Balla G et al (1995) Ferritin protects endothelial cells from oxidized low density lipoprotein in vitro. Am J Pathol 147:782–789

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1275:161–203. https://doi.org/10.1016/0005-2728(96)00022-9

    Article  Google Scholar 

  249. Kell DB, Pretorius E (2014) Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 6:748–773. https://doi.org/10.1039/c3mt00347g

    Article  CAS  PubMed  Google Scholar 

  250. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611. https://doi.org/10.1002/jnr.490270421

    Article  CAS  PubMed  Google Scholar 

  251. Connor JR, Menzies SL, Burdo JR, Boyer PJ (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25:118–129

    CAS  PubMed  Google Scholar 

  252. Regan RF, Kumar N, Gao F, Guo Y (2002) Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience 113:985–994

    CAS  PubMed  Google Scholar 

  253. Simon D, Nicol JMB, Sabino da Silva S et al (2015) Serum ferritin correlates with Glasgow coma scale scores and fatal outcome after severe traumatic brain injury. Brain Inj 29:612–617. https://doi.org/10.3109/02699052.2014.995228

    Article  PubMed  Google Scholar 

  254. Gomes JA, Selim M, Cotleur A et al (2014) Brain iron metabolism and brain injury following subarachnoid hemorrhage: iCeFISH-pilot (CSF iron in SAH). Neurocrit Care 21:285–293. https://doi.org/10.1007/s12028-014-9977-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Andersen CBF, Stødkilde K, Sæderup KL et al (2017) Haptoglobin. Antioxid Redox Signal 26:814–831. https://doi.org/10.1089/ars.2016.6793

    Article  CAS  PubMed  Google Scholar 

  256. Bulters D, Gaastra B, Zolnourian A et al (2018) Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nat Rev Neurol 14:416–432. https://doi.org/10.1038/s41582-018-0020-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by grants from the Brain Aneurysm Foundation, the American Heart Association, and the National Institutes of Health (R21NS095166, NS103036, NS110008), and the Department of Anesthesiology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven A. Robicsek or Sylvain Doré.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robicsek, S.A., Bhattacharya, A., Rabai, F. et al. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 57, 159–178 (2020). https://doi.org/10.1007/s12035-019-01766-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01766-8

Keywords

Navigation