Skip to main content

Advertisement

Log in

The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several lines of evidence indicate that aberrations in immune-inflammatory pathways may contribute to the pathophysiology of schizophrenia spectrum disorders. Here, we propose a novel theoretical framework that was previously developed for major depression and bipolar disorder, namely, the compensatory immune-regulatory reflex system (CIRS), as applied to the neuro-immune pathophysiology of schizophrenia and its phenotypes, including first-episode psychosis (FEP), acute relapses, chronic and treatment-resistant schizophrenia (TRS), comorbid depression, and deficit schizophrenia. These schizophrenia phenotypes and manifestations are accompanied by increased production of positive acute-phase proteins, including haptoglobin and α2-macroglobulin, complement factors, and macrophagic M1 (IL-1β, IL-6, and TNF-α), T helper (Th)-1 (interferon-γ and IL-2R), Th-2 (IL-4, IL-5), Th-17 (IL-17), and T regulatory (Treg; IL-10 and transforming growth factor (TGF)-β1) cytokines, cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway, and chemokines, including CCL-11 (eotaxin), CCL-2, CCL-3, and CXCL-8. While the immune profiles in the different schizophrenia phenotypes indicate the activation of the immune-inflammatory response system (IRS), there are simultaneous signs of CIRS activation, including increased levels of the IL-1 receptor antagonist (sIL-1RA), sIL-2R and tumor necrosis factor-α receptors, Th-2 and Treg phenotypes with increased IL-4 and IL-10 production, and increased levels of TRYCATs and haptoglobin, α2-macroglobulin, and other acute-phase reactants, which have immune-regulatory and anti-inflammatory effects. Signs of activated IRS and CIRS pathways are also detected in TRS, chronic, and deficit schizophrenia, indicating that these conditions are accompanied by a new homeostatic setpoint between upregulated IRS and CIRS components. In FEP, increased baseline CIRS activity is a protective factor that may predict favorable clinical outcomes. Moreover, impairments in the CIRS are associated with deficit schizophrenia and greater impairments in semantic and episodic memory. It is concluded that CIRS plays a key role in the pathophysiology of schizophrenia by negatively regulating the primary IRS and contributing to recovery from the acute phase of illness. Therefore, components of the CIRS may offer promising therapeutic targets for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TRYCAT:

Tryptophan catabolite

NMDA:

N-methyl-d-aspartate

Hp:

Haptoglobin

Fb:

Fibrinogen

C3C:

Complement component 3

C4:

Complement 4

alpha 1S:

Alpha 1-acid-glycoprotein

Hpx:

Hemopexin

sIL-2R:

Soluble interleukin-2 receptor

IL:

Interleukin

IRS:

Immune-inflammatory response system

TNF-α:

Tumor necrosis factor-alpha

IFN-γ:

Interferon-gamma

Th:

T helper

iTreg:

Induced T regulatory

TGF:

Transforming growth factor

CIRS:

Compensatory immune-regulatory reflex system

FEP:

First-episode psychosis

TRS:

Treatment-resistant schizophrenia

LPS:

Lipopolysaccharides

NK cells:

Natural killer cells

CRP:

C-reactive protein

CSF:

Cerebrospinal fluid

CC:

Clara cell secretory protein

CXCL8:

Chemokine (C-X-C motif) ligand 8

CCL:

Chemokine ligands

MIP:

Macrophage inflammatory protein

IDO:

Indoleamine 2,3-dioxygenase enzyme

PANSS:

Positive and Negative Syndrome Scale

NFκB:

Nuclear factor-kappa-B

NDEL1:

Nuclear distribution protein nudE-like 1

MBP:

Myelin basic protein

COMT:

Catechol-O-methyltransferase

HERV:

Human endogenous retrovirus

GM-CSF :

Granulocyte-macrophage colony-stimulating factor

DCs:

Dendritic cells

References

  1. GBD 2015 DALYs, HALE Collaborators (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1603–1658

    Google Scholar 

  2. Jaaskelainen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, Veijola J, Miettunen J (2013) A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull 39:1296–1306

    PubMed  Google Scholar 

  3. Zhu Y, Li C, Huhn M, Rothe P, Krause M, Bighelli I, Schneider-Thoma J, Leucht S (2017) How well do patients with a first episode of schizophrenia respond to antipsychotics: a systematic review and meta-analysis. Eur Neuropsychopharmacol 27(9):835–844

    CAS  PubMed  Google Scholar 

  4. Buchanan RW, Carpenter WT (2005) Kaplan & Sadock′s comprehensive textbook of psychiatry, 8th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Sham PC, Maclean CJ, Kendler KS (1994) A typological model of schizophrenia based on age at onset, sex and familial morbidity. Acta Psychiatr Scand 89:135–141

    CAS  PubMed  Google Scholar 

  6. Aleman A, Kahn RS, Selten JP (2003) Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 60:565–571

    PubMed  Google Scholar 

  7. Gottesman II, Wolfgram DL (1991) Schizophrenia genesis: the origins of madness. Freeman, New York

    Google Scholar 

  8. Ingraham LJ, Kety SS (2000) Adoption studies of schizophrenia. Am J Med Genet 97:18–22

    CAS  PubMed  Google Scholar 

  9. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    PubMed  Google Scholar 

  10. Jia P, Wang L, Meltzer HY, Zhao Z (2010) Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res 122:38–42

    PubMed  PubMed Central  Google Scholar 

  11. McAllister AK (2014) Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 75:262–268

    CAS  PubMed  Google Scholar 

  12. Schmitt A, Leonardi-Essmann F, Durrenberger PF, Parlapani E, Schneider-Axmann T, Spanagel R, Arzberger T, Kretzschmar H et al (2011) Regulation of immune-modulatory genes in left superior temporal cortex of schizophrenia patients: a genome-wide microarray study. World J Biol Psychiatry 12:201–215

    PubMed  Google Scholar 

  13. Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatr 159:1080–1092

    PubMed  Google Scholar 

  14. Cattane N, Richetto J, Cattaneo A (2018) Prenatal exposure to environmental insults and enhanced risk of developing schizophrenia and autism spectrum disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2018.07.001

  15. Clair DS, Xu M, Wang P, Yu Y, Fang Y, Zhang F, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Google Scholar 

  16. Anderson G, Maes M (2013) Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry 42:5–19

    CAS  Google Scholar 

  17. Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202

    PubMed  PubMed Central  Google Scholar 

  18. Torrey EF, Yolken RH (2003) Toxoplasma gondii and schizophrenia. Emerg Infect Dis 9:1375–1380

    PubMed  PubMed Central  Google Scholar 

  19. Heath RG, Krupp IM (1967) Schizophrenia as an immunologic disorder. I. Demonstration of antibrain globulins by fluorescent antibody techniques. Arch Gen Psychiatry 16(1):1–9

    CAS  PubMed  Google Scholar 

  20. Smith RS, Maes M (1995) The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 45(2):135–141

    CAS  PubMed  Google Scholar 

  21. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpe S (1997) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66:1–11

    CAS  PubMed  Google Scholar 

  22. Maes M, Meltzer HY, Bosmans E (1994) Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 89(5):346–351

    CAS  PubMed  Google Scholar 

  23. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, Sommer IE (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7(3):e1075. https://doi.org/10.1038/tp.2017.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orlovska-Waast S, Kohler-Forsberg O, Brix SW, Nordentoft M, Kondziella D, Krogh J, Benros ME (2018) Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: a systematic review and meta-analysis. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0220-4

    PubMed  PubMed Central  Google Scholar 

  26. Wang AK, Miller BJ (2018) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 44(1):75–83. https://doi.org/10.1093/schbul/sbx035

    Article  PubMed  Google Scholar 

  27. Sanders AR, Drigalenko EI, Duan J, Moy W, Freda J, Goring HHH, Gejman PV (2017) Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl Psychiatry 7(4):e1093. https://doi.org/10.1038/tp.2017.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pouget JG (2018) The emerging immunogenetic architecture of schizophrenia. Schizophr Bull 44(5):993–1004. https://doi.org/10.1093/schbul/sby038

    Article  PubMed  PubMed Central  Google Scholar 

  29. Noto C, Ota VK, Gouvea ES, Rizzo LB, Spindola LM, Honda PH, Cordeiro Q, Belangero SI et al (2014) Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int J Neuropsychopharmacol 18(4)

    Google Scholar 

  30. Gadelha A, Yonamine CM, Nering M, Rizzo LB, Noto C, Cogo-Moreira H, Teixeira AL, Bressan R et al (2015) Angiotensin converting enzyme activity is positively associated with IL-17a levels in patients with schizophrenia. Psychiatry Res 229(3):702–707. https://doi.org/10.1016/j.psychres.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Zhang Q, Li N, Wang F, Xiang H, Zhang Z, Su Y, Huang Y et al (2016) Plasma levels of Th17-related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res 246:700–706. https://doi.org/10.1016/j.psychres.2016.10.061

    Article  CAS  PubMed  Google Scholar 

  32. Maes M, Carvalho AF (2018) The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1016-x

    CAS  PubMed  Google Scholar 

  33. Noto C, Ota VK, Santoro ML, Ortiz BB, Rizzo LB, Higuchi CH, Cordeiro Q, Belangero SI et al (2015) Effects of depression on the cytokine profile in drug naïve first-episode psychosis. Schizophr Res 164(1–3):53–58

    PubMed  Google Scholar 

  34. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, Leonard BE (2004) Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 28(7):1129–1134. https://doi.org/10.1016/j.pnpbp.2004.05.047

    Article  CAS  Google Scholar 

  35. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maes M, Song C, Yirmiya R (2012) Targeting IL-1 in depression. Expert Opin Ther Targets 16(11):1097–1112

    CAS  PubMed  Google Scholar 

  37. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/p6-13

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maes M, Anderson G, Kubera M, Berk M (2014) Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 18(5):495–512

    CAS  PubMed  Google Scholar 

  39. Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195. https://doi.org/10.1002/1097-0029(20000801)50:3<184::aid-jemt2>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  40. Bouma MG, Buurman WA (2000) Assay of soluble tumor necrosis factor receptors. Methods Mol Med 36:91–100. https://doi.org/10.1385/1-59259-216-3:91

    Article  CAS  PubMed  Google Scholar 

  41. Huang ZS, Chiang BL, Hsu KL (2000) Serum level of soluble tumor necrosis factor receptor II (sTNF-R75) is apparently an index of overall monocyte-related infectious and inflammatory activity. Am J Med Sci 320(3):183–187

    CAS  PubMed  Google Scholar 

  42. Arandjelovic S, Dragojlovic N, Li X, Myers RR, Campana WM, Gonias SL (2007) A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury. J Neurochem 103(2):694–705. https://doi.org/10.1111/j.1471-4159.2007.04800.x

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Kong X, Zhang Z, Chen W, Chen J, Li H, Cao W, Ge Y et al (2014) Alpha-2-macroglobulin as a radioprotective agent: a review. Chin J Cancer Res 26(5):611–621. https://doi.org/10.3978/j.issn.1000-9604.2014.09.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214

    CAS  PubMed  Google Scholar 

  45. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808

    CAS  PubMed  Google Scholar 

  46. Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell'osso B, Kanba S, Monji A et al (2013) Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:1–4

    CAS  Google Scholar 

  47. Meyer U (2013) Developmental neuroinflammation and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:20–34

    CAS  Google Scholar 

  48. Maes M, Delanghe J, Bocchio Chiavetto L, Bignotti S, Tura GB, Pioli R, Zanardini R, Altamura CA (2001) Haptoglobin polymorphism and schizophrenia: genetic variation on chromosome 16. Psychiatry Res 104(1):1–9

    CAS  PubMed  Google Scholar 

  49. Delanghe J, Langlois M, Duprez D, De Buyzere M, Clement D (1999) Haptoglobin polymorphism and peripheral arterial occlusive disease. Atherosclerosis 145(2):287–292

    CAS  PubMed  Google Scholar 

  50. Guetta J, Strauss M, Levy NS, Fahoum L, Levy AP (2007) Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin. Atherosclerosis 191(1):48–53. https://doi.org/10.1016/j.atherosclerosis.2006.04.032

    Article  CAS  PubMed  Google Scholar 

  51. Dalan R, Liew H, Goh LL, Gao X, Chew DE, Boehm BO, Leow MK (2016) The haptoglobin 2-2 genotype is associated with inflammation and carotid artery intima-media thickness. Diab Vasc Dis Res 13(5):373–376. https://doi.org/10.1177/1479164116645247

    Article  CAS  PubMed  Google Scholar 

  52. Quaye IK (2008) Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 102(8):735–742. https://doi.org/10.1016/j.trstmh.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  53. Licinio J, Seibyl JP, Altemus M, Charney DS, Krystal JH (1993) Elevated CSF levels of interleukin-2 in neuroleptic-free schizophrenic patients. Am J Psychiatry 150(9):1408–1410. https://doi.org/10.1176/ajp.150.9.1408

    Article  CAS  PubMed  Google Scholar 

  54. Ganguli R, Yang Z, Shurin G, Chengappa KN, Brar JS, Gubbi AV, Rabin BS (1994) Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 51(1):1–10

    CAS  PubMed  Google Scholar 

  55. Katila H, Appelberg B, Hurme M, Rimon R (1994) Plasma levels of interleukin-1 beta and interleukin-6 in schizophrenia, other psychoses, and affective disorders. Schizophr Res 12(1):29–34

    CAS  PubMed  Google Scholar 

  56. Maes M, Meltzer HY, Buckley P, Bosmans E (1995) Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 244(6):325–329

    CAS  PubMed  Google Scholar 

  57. Sirota P, Schild K, Elizur A, Djaldetti M, Fishman P (1995) Increased interleukin-1 and interleukin-3 like activity in schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 19(1):75–83

    CAS  Google Scholar 

  58. Maes M, Bosmans E, Ranjan R, Vandoolaeghe E, Meltzer HY, De Ley M, Berghmans R, Stans G et al (1996) Lower plasma CC16, a natural anti-inflammatory protein, and increased plasma interleukin-1 receptor antagonist in schizophrenia: effects of antipsychotic drugs. Schizophr Res 21(1):39–50

    CAS  PubMed  Google Scholar 

  59. Fan X, Goff DC, Henderson DC (2007) Inflammation and schizophrenia. Expert Rev Neurother 7(7):789–796. https://doi.org/10.1586/14737175.7.7.789

    Article  CAS  PubMed  Google Scholar 

  60. Coelho FM, Reis HJ, Nicolato R, Romano-Silva MA, Teixeira MM, Bauer ME, Teixeira AL (2008) Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia. Neuroimmunomodulation 15:140–144

    CAS  PubMed  Google Scholar 

  61. Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, Agartz I, Ueland T et al (2009) Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 11:726–734

    CAS  PubMed  Google Scholar 

  62. Hope S, Ueland T, Steen NE, Dieset I, Lorentzen S, Berg AO, Agartz I, Aukrust P et al (2013) Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophr Res 145(1-3):36–42

    PubMed  Google Scholar 

  63. Noto C, Gadelha A, Belangero SI, Spindola LM, Rocha NP, de Miranda AS, Teixeira AL, Cardoso Smith MA et al (2013) Circulating levels of sTNFR1 as a marker of severe clinical course in schizophrenia. J Psychiatr Res 47(4):467–471

    PubMed  Google Scholar 

  64. Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura GJ, Pioli R, Boin F, Kenis G, Bosmans E et al (2002) Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 54(3):281–291

    PubMed  Google Scholar 

  65. Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC (2002) Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 57(2–3):247–258

    PubMed  Google Scholar 

  66. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC (2004) Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 65(7):940–947

    CAS  PubMed  Google Scholar 

  67. Teixeira AL, Reis HJ, Nicolato R, Brito-Melo G, Correa H, Teixeira MM, Romano-Silva MA (2008) Increased serum levels of CCL11/eotaxin in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:710–714

    CAS  Google Scholar 

  68. Beumer W, Drexhage RC, De Wit H, Versnel MA, Drexhage HA, Cohen D (2012) Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 37(12):1901–1911

    CAS  PubMed  Google Scholar 

  69. Reale M, Patruno A, De Lutiis MA, Pesce M, Felaco M, Di Giannantonio M, Di Nicola M, Grilli A (2011) Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci 12:13

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115

    CAS  PubMed  Google Scholar 

  71. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2018) Eotaxin, an endogenous cognitive deteriorating chemokine (ECDC), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox Res. https://doi.org/10.1007/s12640-018-9937-8

    PubMed  Google Scholar 

  72. Sirivichayakul S, Kanchanatwan B, Thika S, Carvalho A, Maes M (2018(preprint)) A new schizophrenia model: immune activation is associated with induction of the tryptophan catabolite pathway and increased eotaxin levels which together determine memory impairments and schizophrenia symptom dimensions. bioRxiv:393173. https://doi.org/10.1101/393173

  73. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 91(9):3652–3656

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H et al (2017) Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43(4):764–777. https://doi.org/10.1093/schbul/sbw221

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Anderson G, Maes M (2017) Deficit schizophrenia is characterized by defects in IgM-mediated responses to tryptophan catabolites (TRYCATs): a paradigm shift towards defects in natural self-regulatory immune responses coupled with mucosa-derived TRYCAT pathway activation. Mol Neurobiol

  76. Lee M, Jayathilake K, Dai J, Meltzer HY (2011) Decreased plasma tryptophan and tryptophan/large neutral amino acid ratio in patients with neuroleptic-resistant schizophrenia: relationship to plasma cortisol concentration. Psychiatry Res 185(3):328–333. https://doi.org/10.1016/j.psychres.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  77. Barry S, Clarke G, Scully P, Dinan TG (2009) Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 23(3):287–294. https://doi.org/10.1177/0269881108089583

    Article  CAS  PubMed  Google Scholar 

  78. Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38(3):426–432. https://doi.org/10.1093/schbul/sbq086

    Article  PubMed  Google Scholar 

  79. Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, Anderson G, Maes M (2017) Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol

  80. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):702–721

    CAS  Google Scholar 

  81. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107(4):452–460

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E (2007) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett 28(6):826–831

    CAS  PubMed  Google Scholar 

  83. Khoury R, Nasrallah HA (2018) Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): state or trait? Schizophr Res. https://doi.org/10.1016/j.schres.2018.04.017

    PubMed  Google Scholar 

  84. Zeni-Graiff M, Rizzo LB, Mansur RB, Maurya PK, Sethi S, Cunha GR, Asevedo E, Pan P et al (2016) Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophr Res 176(2–3):191–195. https://doi.org/10.1016/j.schres.2016.06.031

    Article  PubMed  Google Scholar 

  85. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, Labad J (2014) Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology 41:23–32. https://doi.org/10.1016/j.psyneuen.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  86. Kappelmann N, Khandaker GM, Dal H, Stochl J, Kosidou K, Jones PB, Dalman C, Karlsson H (2018) Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study. Psychol Med:1–8. https://doi.org/10.1017/s0033291718000831

    PubMed  PubMed Central  Google Scholar 

  87. Sanger TM, Lieberman JA, Tohen M, Grundy S, Beasley CJ, Tollefson GD (1999) Olanzapine versus haloperidol treatment in first-episode psychosis. Am J Psychiatry 156(1):79–87

    CAS  PubMed  Google Scholar 

  88. McCleery A, Ventura J, Kern RS, Subotnik KL, Gretchen-Doorly D, Green MF, Hellemann GS, Nuechterlein KH (2014) Cognitive functioning in first-episode schizophrenia: MATRICS consensus cognitive battery (MCCB) profile of impairment. Schizophr Res 157(1–3):33–39

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li T, Wang Q, Zhang J, Rolls ET, Yang W, Palaniyappan L, Zhang L, Cheng W et al (2017) Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull 43(2):436–448

    PubMed  Google Scholar 

  90. Torres US, Duran FL, Schaufelberger MS, Crippa JA, Louzã MR, Sallet PC, Kanegusuku CY, Elkis H et al (2016) Patterns of regional gray matter loss at different stages of schizophrenia: a multisite, cross-sectional VBM study in first-episode and chronic illness. Neuroimage Clin 12:1–15

    PubMed  PubMed Central  Google Scholar 

  91. Gaebel W, Jänner M, Frommann N, Pietzcker A, Köpcke W, Linden M, Müller P, Müller-Spahn F et al (2002) First vs multiple episode schizophrenia: two-year outcome of intermittent and maintenance medication strategies. Schizophr Res 53(1–2):145–159

    PubMed  Google Scholar 

  92. Yee JY, Nurjono M, Ng WY, Teo SR, Lee TS, Lee J (2017) Peripheral blood gene expression of acute phase proteins in people with first episode psychosis. Brain Behav Immun 65:337–341. https://doi.org/10.1016/j.bbi.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  93. Garcia-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martinez-Cengotitabengoa M, Pina-Camacho L, Rodriguez-Jimenez R, Saiz PA et al (2014) Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull 40:376–387

    PubMed  Google Scholar 

  94. Zhu Q, Li X, Hie G, Yuan X, Lü L, Song X (2015) Analysis of the changes of serum high mobility group protein B1 and cytokines in first-episode schizophrenia patients. Zhonghua Yi Xue Za Zhi 95(47):3818–3822

    CAS  PubMed  Google Scholar 

  95. Kubistova A, Horacek J, Novak T (2012) Increased interleukin-6 and tumor necrosis factor alpha in first episode schizophrenia patients versus healthy controls. Psychiatr Danub 24(Suppl 1):S153–S156

    PubMed  Google Scholar 

  96. de Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS, Bahn S (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154(1–3):23–29

    PubMed  Google Scholar 

  97. Zhang XY, Tang W, Xiu MH, Chen DC, Yang FD, Tan YL, Wang ZR, Zhang F et al (2013) Interleukin 18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain Behav Immun 32:105–111

    PubMed  Google Scholar 

  98. Fu YY, Zhang T, Xiu MH, Tang W, Han M, Yun LT, Chen DC, Chen S et al (2016) Altered serum levels of interleukin-3 in first-episode drug-naive and chronic medicated schizophrenia. Schizophr Res 176(2–3):196–200

    PubMed  Google Scholar 

  99. Borovcanin M, Jovanovic I, Radosavljevic G, Djukic Dejanovic S, Bankovic D, Arsenijevic N, Lukic ML (2012) Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J Psychiatr Res 46(11):1421–1426

    PubMed  Google Scholar 

  100. Brinholi FF, Noto C, Maes M, Bonifácio KL, Brietzke E, Ota VK, Gadelha A, Cordeiro Q et al (2015) Lowered paraoxonase 1 (PON1) activity is associated with increased cytokine levels in drug naïve first episode psychosis. Schizophr Res 166(1–3):225–230

    PubMed  Google Scholar 

  101. Kaminska T, Wysocka A, Marmurowska-Michalowska H, Dubas-Slemp H, Kandefer-Szerszen M (2001) Investigation of serum cytokine levels and cytokine production in whole blood cultures of paranoid schizophrenic patients. Arch Immunol Ther Exp 49(6):439–445

    CAS  Google Scholar 

  102. Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, Moreira JC, Teixeira AL, Lobato MI et al (2012) Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 46(6):819–824

    PubMed  Google Scholar 

  103. Xiu MH, Yang GG, Tan YL, Chen DC, Tan SP, Wang ZR, Yang FD, Okusaga O et al (2014) Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: relationship to psychopathology. Schizophr Res 156(1):9–14

    PubMed  Google Scholar 

  104. Howard M, O'Garra A (1992) Biological properties of interleukin 10. Immunol Today 13(6):198–200

    CAS  PubMed  Google Scholar 

  105. Fraguas D, Diaz-Caneja CM, Ayora M, Hernandez-Alvarez F, Rodriguez-Quiroga A, Recio S, Leza JC, Arango C (2018) Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull. https://doi.org/10.1093/schbul/sby125

    PubMed Central  Google Scholar 

  106. Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155(1–3):101–108

    PubMed  Google Scholar 

  107. Di Nicola M, Cattaneo A, Hepgul N, Di Forti M, Aitchison KJ, Janiri L, Murray RM, Dazzan P et al (2013) Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun 31:90–95. https://doi.org/10.1016/j.bbi.2012.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noto C, Ota VK, Santoro ML, Gouvea ES, Silva PN, Spindola LM, Cordeiro Q, Bressan RA et al (2016) Depression, cytokine, and cytokine by treatment interactions modulate gene expression in antipsychotic naïve first episode psychosis. Mol Neurobiol 53(8):5701–5709

    CAS  PubMed  Google Scholar 

  109. Nilsson LK, Nordin C, Jonsson EG, Engberg G, Linderholm KR, Erhardt S (2007) Cerebrospinal fluid kynurenic acid in male and female controls—correlation with monoamine metabolites and influences of confounding factors. J Psychiatr Res 41(1–2):144–151. https://doi.org/10.1016/j.jpsychires.2005.12.001

    Article  PubMed  Google Scholar 

  110. Davis J, Eyre H, Jacka FN, Dodd S, Dean O, McEwen S, Debnath M, McGrath J et al (2016) A review of vulnerability and risks for schizophrenia: beyond the two hit hypothesis. Neurosci Biobehav Rev 65:185–194

    PubMed  PubMed Central  Google Scholar 

  111. Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG, Zhu F (2006) Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res 83(2–3):193–199

    PubMed  Google Scholar 

  112. Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH (2001) Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 98(8):4634–4639

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Karlsson H, Schroder J, Bachmann S, Bottmer C, Yolken RH (2004) HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 9(1):12–13

    CAS  PubMed  Google Scholar 

  114. Yao Y, Schröder J, Nellåker C, Bottmer C, Bachmann S, Yolken RH, Karlsson H (2008) Elevated levels of human endogenous retrovirus-W transcripts in blood cells from patients with first episode schizophrenia. Genes Brain Behav 7(1):103–112

    CAS  PubMed  Google Scholar 

  115. Dickerson F, Lillehoj E, Stallings C, Wiley M, Origoni A, Vaughan C, Khushalani S, Sabunciyan S et al (2012) Antibodies to retroviruses in recent onset psychosis and multi-episode schizophrenia. Schizophr Res 138(2–3):198–205

    PubMed  Google Scholar 

  116. Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C (2007) The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol (Baltimore, Md : 1950) 179(2):1210–1224

    CAS  Google Scholar 

  117. Arias I, Sorlozano A, Villegas E, de Dios LJ, McKenney K, Cervilla J, Gutierrez B, Gutierrez J (2012) Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res 136(1–3):128–136

    PubMed  Google Scholar 

  118. Krause D, Matz J, Weidinger E, Wagner J, Wildenauer A, Obermeier M, Riedel M, Müller N (2010) The association of infectious agents and schizophrenia. World J Biol Psychiatry 11(5):739–743

    PubMed  Google Scholar 

  119. Perron H, Lang A (2010) The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 39(1):51–61

    CAS  PubMed  Google Scholar 

  120. Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W (2006) Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis 194(10):1447–1449

    CAS  PubMed  Google Scholar 

  121. Li F, Nellåker C, Sabunciyan S, Yolken RH, Jones-Brando L, Johansson AS, Owe-Larsson B, Karlsson H (2014) Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 88(8):4328–4337

    PubMed  PubMed Central  Google Scholar 

  122. Torrey EF, Bartko JJ, Yolken RH (2012) Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr Bull 38(3):642–647

    PubMed  PubMed Central  Google Scholar 

  123. Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN (2006) The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol (Baltimore, Md : 1950) 176(12):7636–7644

    CAS  Google Scholar 

  124. Sperner-Unterweger B, Whitworth A, Kemmler G, Hilbe W, Thaler J, Weiss G, Fleischhacker WW (1999) T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res 38(1):61–70

    CAS  PubMed  Google Scholar 

  125. Boll KM, Noto C, Bonifácio KL, Bortolasci CC, Gadelha A, Bressan RA, Barbosa DS, Maes M et al (2017) Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res 253:43–48

    CAS  PubMed  Google Scholar 

  126. Xiu MH, Chen DC, Wang D, Zhang K, Dong A, Tang W, Zhang F, Liu LJ et al (2012) Elevated interleukin-18 serum levels in chronic schizophrenia: association with psychopathology. J Psychiatr Res 46(8):1093–1098

    PubMed  Google Scholar 

  127. Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E, Pioli R, Altamura C et al (1998) The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 32(1):9–15

    CAS  PubMed  Google Scholar 

  128. Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura G, Pioli R, Boin F, Kenis G, Bosmans E et al (2000) Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur Neuropsychopharmacol 10(2):119–124

    CAS  PubMed  Google Scholar 

  129. Mundo E, Altamura AC, Vismara S, Zanardini R, Bignotti S, Randazzo R, Montresor C, Gennarelli M (2005) MCP-1 gene (SCYA2) and schizophrenia: a case-control association study. Am J Med Genet B Neuropsychiatr Genet 132B(1):1–4

    PubMed  Google Scholar 

  130. Rovin BH, Lu L, Saxena R (1999) A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 259(2):344–348

    CAS  PubMed  Google Scholar 

  131. Upthegrove R, Birchwood M, Ross K, Brunett K, McCollum R, Jones L (2010) The evolution of depression and suicidality in first episode psychosis. Acta Psychiatr Scand 122(3):211–218. https://doi.org/10.1111/j.1600-0447.2009.01506.x

    Article  PubMed  Google Scholar 

  132. Sonmez N, Rossberg JI, Evensen J, Barder HE, Haahr U, Ten Velden HW, Joa I, Johannessen JO et al (2016) Depressive symptoms in first-episode psychosis: a 10-year follow-up study. Early Interv Psychiatry 10(3):227–233. https://doi.org/10.1111/eip.12163

    Article  PubMed  Google Scholar 

  133. Kanchanatawan B, Thika S, Sirivichayakul S, Carvalho AF, Geffard M, Maes M (2018) In schizophrenia, depression, anxiety, and physiosomatic symptoms are strongly related to psychotic symptoms and excitation, impairments in episodic memory, and increased production of neurotoxic tryptophan catabolites: a multivariate and machine learning study. Neurotox Res 33(3):641–655. https://doi.org/10.1007/s12640-018-9868-4

    Article  CAS  PubMed  Google Scholar 

  134. Milev P, Ho BC, Arndt S, Andreasen NC (2005) Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry 162(3):495–506. https://doi.org/10.1176/appi.ajp.162.3.495

    Article  PubMed  Google Scholar 

  135. Kirkpatrick B, Galderisi S (2008) Deficit schizophrenia: an update. World Psychiatry 7(3):143–147

    PubMed  PubMed Central  Google Scholar 

  136. Kanchanatawan B, Hemrungrojn S, Thika S, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Anderson G et al (2017) Changes in tryptophan catabolite (TRYCAT) pathway patterning are associated with mild impairments in declarative memory in schizophrenia and deficits in semantic and episodic memory coupled with increased false-memory creation in deficit schizophrenia. Mol Neurobiol

  137. Asevedo E, Rizzo LB, Gadelha A, Mansur RB, Ota VK, Berberian AA, Scarpato BS, Teixeira AL et al (2014) Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav 129:194–198

    CAS  PubMed  Google Scholar 

  138. Bresee C, Rapaport MH (2009) Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia. Int J Neuropsychopharmacol 12(6):861–865

    CAS  PubMed  Google Scholar 

  139. Kim YK, Kim L, Lee MS (2000) Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 44(3):165–175

    CAS  PubMed  Google Scholar 

  140. Simsek S, Yildirim V, Cim A, Kaya S (2016) Serum IL-4 and IL-10 levels correlate with the symptoms of the drug-naive adolescents with first episode, early onset schizophrenia. J Child Adolesc Psychopharmacol 26(8):721–726. https://doi.org/10.1089/cap.2015.0220

    Article  CAS  PubMed  Google Scholar 

  141. Noto MN, Maes M, Nunes SO, Ota VK, Rossaneisf AC, Verri JW, Cordeiro Q, Belangero SI, Gadelha A, Bressan RA, Noto C (2018(to be submitted as preprint)) Activation of the immune-inflammatory response system and the compensatory immune-regulatory reflex system in antipsychotic naive first episode psychosis.

  142. Asevedo E, Gadelha A, Noto C, Mansur RB, Zugman A, Belangero SIN, Berberian AA, Scarpato BS et al (2013) Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J Psychiatr Res 47:1376–1382

    PubMed  Google Scholar 

  143. Mantovani A, Sozzani S, Locati M, Schioppa T, Saccani A, Allavena P, Sica A (2004) Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp 256:137–145 discussion 146-138, 259-169

    PubMed  Google Scholar 

  144. Schwarz MJ, Muller N, Riedel M, Ackenheil M (2001) The Th2-hypothesis of schizophrenia: a strategy to identify a subgroup of schizophrenia caused by immune mechanisms. Med Hypotheses 56(4):483–486. https://doi.org/10.1054/mehy.2000.1203

    Article  CAS  PubMed  Google Scholar 

  145. Muller N, Krause D, Weidinger E, Schwarz M (2014) Immunological treatment options for schizophrenia. Fortschr Neurol Psychiatr 82(4):210–219. https://doi.org/10.1055/s-0033-1355776

    Article  CAS  PubMed  Google Scholar 

  146. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY (1995) Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 29(2):141–152

    CAS  PubMed  Google Scholar 

  147. Maes M (1997) Cytokines in schizophrenia. Biol Psychiatry 42(4):308–309. https://doi.org/10.1016/s0006-3223(97)00240-0

    Article  CAS  PubMed  Google Scholar 

  148. Guimaraes PM, Scavuzzi BM, Stadtlober NP, Franchi Santos L, Lozovoy MAB, Iriyoda TMV, Costa NT, Reiche EMV et al (2017) Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol 95(9):824–831. https://doi.org/10.1038/icb.2017.53

    Article  CAS  PubMed  Google Scholar 

  149. Yusa T, Tateda K, Ohara A, Miyazaki S (2017) New possible biomarkers for diagnosis of infections and diagnostic distinction between bacterial and viral infections in children. J Infect Chemother 23(2):96–100. https://doi.org/10.1016/j.jiac.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  150. Degre M (1996) Interferons and other cytokines in bacterial infections. J Interf Cytokine Res 16(6):417–426

    CAS  Google Scholar 

  151. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785

    CAS  PubMed  Google Scholar 

  152. Davis J, Moylan S, Harvey BH, Maes M, Berk M (2014) Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 48(6):512–529

    PubMed  Google Scholar 

  153. Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63(3):257–265

    CAS  PubMed  Google Scholar 

  154. Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW (2007) Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64(5):521–529. https://doi.org/10.1001/archpsyc.64.5.521

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172(1):146–155. https://doi.org/10.2353/ajpath.2008.070690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Senior K (2009) Interleukin-17 and brain injury in stroke. Nat Rev Neurol 5:524

    Google Scholar 

  157. Willette AA, Coe CL, Birdsill AC, Bendlin BB, Colman RJ, Alexander AL, Allison DB, Weindruch RH et al (2013) Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. Age (Dordr) 35(6):2215–2227. https://doi.org/10.1007/s11357-013-9518-y

    Article  CAS  Google Scholar 

  158. McLarnon JG (2016) Chemokine interleukin-8 (IL-8) in Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis Parkinsonism 6:273

    Google Scholar 

  159. Connor TJ, Starr N, O'Sullivan JB, Harkin A (2008) Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett 441(1):29–34. https://doi.org/10.1016/j.neulet.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  160. Gadani SP, Cronk JC, Norris GT, Kipnis J (2012) IL-4 in the brain: a cytokine to remember. J Immunol (Baltimore, Md : 1950) 189(9):4213–4219. https://doi.org/10.4049/jimmunol.1202246

    Article  CAS  Google Scholar 

  161. Mori S, Maher P, Conti B (2016) Neuroimmunology of the interleukins 13 and 4. Brain Sci 6(2). https://doi.org/10.3390/brainsci6020018

    PubMed Central  Google Scholar 

  162. Liva SM, de Vellis J (2001) IL-5 induces proliferation and activation of microglia via an unknown receptor. Neurochem Res 26(6):629–637

    CAS  PubMed  Google Scholar 

  163. Kanchanatawan B, Maes M (2018) The effects of the tryptophan catabolite pathway on negative symptoms and deficit schizophrenia and partly mediated by executive impairments: results of partial least squares path modeling. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527317666180702160921

    CAS  Google Scholar 

  164. Zachar P, Stoyanov DS, Aragona M, Jablensky A (2014) Alternative perspectives on psychiatric validation: DSM, ICD, RDoC, and beyond, International Perspectives in Philosophy and Psychiatry. Oxford University Press, Oxford

    Google Scholar 

  165. Stoyanov D, Machamer PK, Schaffner KF, Rivera-Hernandez R (2012) The challenge of psychiatric nosology and diagnosis. J Eval Clin Pract 18(3):704–709. https://doi.org/10.1111/j.1365-2753.2012.01844.x

    Article  PubMed  Google Scholar 

  166. Al-Hakeim H, Almulla A, Maes M (2019) The neuro-immune fingerprint of major neuro-cognitive psychosis or deficit schizophrenia: a supervised machine learning study. Preprints:2019050285. https://doi.org/10.20944/preprints201905.0285.v1

  167. Kanchanatawan B, Sriswasdi S, Thika S, Sirivichayakul S, Carvalho AF, Geffard M, Kubera M, Maes M (2018) Deficit schizophrenia is a discrete diagnostic category defined by neuro-immune and neurocognitive features: results of supervised machine learning. Metab Brain Dis 33(4):1053–1067. https://doi.org/10.1007/s11011-018-0208-4

    Article  PubMed  Google Scholar 

  168. Almulla A, Al-Hakeim H, Maes M (2019) Schizophrenia phenomenology revisited: positive and negative symptoms are strongly related reflective manifestations of an underlying single trait indicating overall severity of schizophrenia. Preprints:2019070147. https://doi.org/10.20944/preprints201907.0147.v1

  169. Maes M, Rief W (2012) Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res 196(2–3):243–249

    CAS  PubMed  Google Scholar 

  170. Maes M, Schotte C, Maes L, Cosyns P (1990) Clinical subtypes of unipolar depression: part II. Quantitative and qualitative clinical differences between the vital and nonvital depression groups. Psychiatry Res 34(1):43–57

    CAS  PubMed  Google Scholar 

  171. Maes M, Twisk FN, Johnson C (2012) Myalgic encephalomyelitis (ME), chronic fatigue syndrome (CFS), and chronic fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data. Psychiatry Res 200(2–3):754–760

    PubMed  Google Scholar 

  172. Maes M, Moraes JB, Congio A, Bonifacio KL, Barbosa DS, Vargas HO, Michelin AP, Carvalho AF et al (2019) Development of a novel staging model for affective disorders using partial least squares bootstrapping: effects of lipid-associated antioxidant defenses and neuro-oxidative stress. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1552-z

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, grant number RA61/016 and Chulalongkorn University; Government Budget; and by the Asahi Glass Foundation, Chulalongkorn University Centenary Academic Development Project and Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, grant number RA60/042.

Author information

Authors and Affiliations

Authors

Contributions

All the contributing authors have participated in the manuscript. CR and MM designed the study. All authors contributed to the interpretation of the data and writing of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roomruangwong, C., Noto, C., Kanchanatawan, B. et al. The Role of Aberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: the IRS-CIRS Theory of Schizophrenia. Mol Neurobiol 57, 778–797 (2020). https://doi.org/10.1007/s12035-019-01737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01737-z

Keywords

Navigation