Skip to main content
Log in

Myelin Water Fraction Imaging Reveals Hemispheric Asymmetries in Human White Matter That Are Associated with Genetic Variation in PLP1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myelination of axons in the central nervous system is critical for human cognition and behavior. The predominant protein in myelin is proteolipid protein—making PLP1, the gene that encodes for proteolipid protein, one of the primary candidate genes for white matter structure in the human brain. Here, we investigated the relation of genetic variation within PLP1 and white matter microstructure as assessed with myelin water fraction imaging, a neuroimaging technique that has the advantage over conventional diffusion tensor imaging in that it allows for a more direct assessment of myelin content. We observed significant asymmetries in myelin water fraction that were strongest and rightward in the parietal lobe. Importantly, these parietal myelin water fraction asymmetries were associated with genetic variation in PLP1. These findings support the assumption that genetic variation in PLP1 affects white matter myelination in the healthy human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ocklenburg S, Güntürkün O (2018) The lateralized brain: the neuroscience and evolution of hemispheric asymmetries. Academic Press, London

    Google Scholar 

  2. Filley C (2012) The behavioral neurology of white matter, 2nd edn. Oxford University Press USA, Oxford

    Book  Google Scholar 

  3. Ocklenburg S, Gerding WM, Arning L, Genç E, Epplen JT, Güntürkün O, Beste C (2017) Myelin genes and the corpus callosum: proteolipid protein 1 (PLP1) and contactin 1 (CNTN1) gene variation modulates interhemispheric integration. Mol Neurobiol 54(10):7908–7916. https://doi.org/10.1007/s12035-016-0285-5

    Article  CAS  PubMed  Google Scholar 

  4. Friedrich P, Ocklenburg S, Heins N, Schlüter C, Fraenz C, Beste C, Güntürkün O, Genç E (2017) Callosal microstructure affects the timing of electrophysiological left-right differences. Neuroimage 163:310–318. https://doi.org/10.1016/j.neuroimage.2017.09.048

    Article  PubMed  Google Scholar 

  5. Krämer EM, Schardt A, Nave KA (2001) Membrane traffic in myelinating oligodendrocytes. Microsc Res Tech 52(6):656–671. https://doi.org/10.1002/jemt.1050

    Article  PubMed  Google Scholar 

  6. Boiko T, Winckler B (2006) Myelin under construction—teamwork required. J Cell Biol 172(6):799–801. https://doi.org/10.1083/jcb.200602101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Laule C, Vavasour IM, Kolind SH, Li DKB, Traboulsee TL, Moore GRW, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4(3):460–484. https://doi.org/10.1016/j.nurt.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  8. Griffiths I, Klugmann M, Anderson T, Thomson C, Vouyiouklis D, Nave KA (1998) Current concepts of PLP and its role in the nervous system. Microsc Res Tech 41(5):344–358. https://doi.org/10.1002/(SICI)1097-0029(19980601)41:5<344:AID-JEMT2>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  9. Yool DA, Klugmann M, McLaughlin M, Vouyiouklis DA, Dimou L, Barrie JA, McCulloch MC, Nave KA et al (2001) Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 63(2):151–164. https://doi.org/10.1002/1097-4547(20010115)63:2<151:AID-JNR1007>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  10. Chow E, Mottahedeh J, Prins M, Ridder W, Nusinowitz S, Bronstein JM (2005) Disrupted compaction of CNS myelin in an OSP/Claudin-11 and PLP/DM20 double knockout mouse. Mol Cell Neurosci 29(3):405–413. https://doi.org/10.1016/j.mcn.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  11. Patzig J, Kusch K, Fledrich R, Eichel MA, Lüders KA, Möbius W, Sereda MW, Nave KA et al (2016) Proteolipid protein modulates preservation of peripheral axons and premature death when myelin protein zero is lacking. Glia 64(1):155–174. https://doi.org/10.1002/glia.22922

    Article  PubMed  Google Scholar 

  12. Harlow DE, Saul KE, Culp CM, Vesely EM, Macklin WB (2014) Expression of proteolipid protein gene in spinal cord stem cells and early oligodendrocyte progenitor cells is dispensable for normal cell migration and myelination. J Neurosci 34(4):1333–1343. https://doi.org/10.1523/JNEUROSCI.2477-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ocklenburg S, Gerding WM, Raane M, Arning L, Genç E, Epplen JT, Güntürkün O, Beste C (2018) PLP1 gene variation modulates leftward and rightward functional hemispheric asymmetries. Mol Neurobiol 55:7691–7700. https://doi.org/10.1007/s12035-018-0941-z

    Article  CAS  PubMed  Google Scholar 

  14. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13(2):397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  15. Wight PA (2017) Effects of intron 1 sequences on human PLP1 expression: implications for PLP1-related disorders. ASN Neuro 9(4):1759091417720583. https://doi.org/10.1177/1759091417720583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruest T, Holmes WM, Barrie JA, Griffiths IR, Anderson TJ, Dewar D, Edgar JM (2011) High-resolution diffusion tensor imaging of fixed brain in a mouse model of Pelizaeus-Merzbacher disease: comparison with quantitative measures of white matter pathology. NMR Biomed 24(10):1369–1379. https://doi.org/10.1002/nbm.1700

    Article  PubMed  Google Scholar 

  17. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  18. Dreha-Kulaczewski SF, Brockmann K, Henneke M, Dechent P, Wilken B, Gärtner J, Helms G (2012) Assessment of myelination in hypomyelinating disorders by quantitative MRI. J Magn Reson Imaging 36(6):1329–1338. https://doi.org/10.1002/jmri.23774

    Article  PubMed  Google Scholar 

  19. Sumida K, Inoue K, Takanashi J-I, Sasaki M, Watanabe K, Suzuki M, Kurahashi H, Omata T et al (2016) The magnetic resonance imaging spectrum of Pelizaeus-Merzbacher disease: a multicenter study of 19 patients. Brain and Development 38(6):571–580. https://doi.org/10.1016/j.braindev.2015.12.007

    Article  PubMed  Google Scholar 

  20. Takanashi J, Sugita K, Tanabe Y, Nagasawa K, Inoue K, Osaka H, Kohno Y (1999) MR-revealed myelination in the cerebral corticospinal tract as a marker for Pelizaeus-Merzbacher’s disease with proteolipid protein gene duplication. AJNR Am J Neuroradiol 20(10):1822–1828

    CAS  PubMed  Google Scholar 

  21. Banich MT, Belger A (1990) Interhemispheric interaction: how do the hemispheres divide and conquer a task? Cortex 26(1):77–94

    Article  CAS  Google Scholar 

  22. Ocklenburg S, Friedrich P, Güntürkün O, Genç E (2016) Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization? Rev Neurosci 27(5):465–480. https://doi.org/10.1515/revneuro-2015-0052

    Article  PubMed  Google Scholar 

  23. Tournier J-D, Mori S (eds) (2014) Introduction to diffusion tensor imaging: and higher order models, 2nd edn. Calif, Academic Press, Oxford, England, San Diego

    Google Scholar 

  24. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  25. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480. https://doi.org/10.1038/nrn1119

    Article  CAS  PubMed  Google Scholar 

  26. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906

    Article  CAS  Google Scholar 

  27. Genç E, Ocklenburg S, Singer W, Güntürkün O (2015) Abnormal interhemispheric motor interactions in patients with callosal agenesis. Behav Brain Res 293:1–9. https://doi.org/10.1016/j.bbr.2015.07.016

    Article  PubMed  Google Scholar 

  28. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536. https://doi.org/10.1038/nn.3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mädler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain. Magn Reson Imaging 26(7):874–888. https://doi.org/10.1016/j.mri.2008.01.047

    Article  PubMed  Google Scholar 

  30. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. https://doi.org/10.1002/nbm.782

    Article  PubMed  Google Scholar 

  31. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539. https://doi.org/10.1016/j.neuron.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  32. Prasloski T, Rauscher A, MacKay AL et al (2012) Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 63(1):533–539. https://doi.org/10.1016/j.neuroimage.2012.06.064

    Article  PubMed  Google Scholar 

  33. Uddin MN, Figley TD, Marrie RA, Figley CR, for the CCOMS Study Group (2018) Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions. NMR Biomed 31(3). https://doi.org/10.1002/nbm.3868

    Article  Google Scholar 

  34. Whittall KP, MacKay AL, Graeb DA et al (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37(1):34–43

    Article  CAS  Google Scholar 

  35. Whittall KP, MacKay AL (1989) Quantitative interpretation of NMR relaxation data. J Magn Reson (1969) 84(1):134–152. https://doi.org/10.1016/0022-2364(89)90011-5

    Article  CAS  Google Scholar 

  36. Laule C, Kozlowski P, Leung E, Li DKB, MacKay AL, Moore GRW (2008) Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. Neuroimage 40(4):1575–1580. https://doi.org/10.1016/j.neuroimage.2007.12.008

    Article  PubMed  Google Scholar 

  37. Meyers SM, Vavasour IM, Mädler B, Harris T, Fu E, Li DKB, Traboulsee AL, MacKay AL et al (2013) Multicenter measurements of myelin water fraction and geometric mean T2: intra- and intersite reproducibility. J Magn Reson Imaging 38(6):1445–1453. https://doi.org/10.1002/jmri.24106

    Article  PubMed  Google Scholar 

  38. MacKay AL, Laule C (2016) Magnetic resonance of myelin water: an in vivo marker for myelin. Brain Plast 2(1):71–91. https://doi.org/10.3233/BPL-160033

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: a technical review. Magn Reson Med 73(1):70–81. https://doi.org/10.1002/mrm.25198

    Article  CAS  PubMed  Google Scholar 

  40. Kroeker RM, Mark Henkelman R (1986) Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J Magn Reson (1969) 69(2):218–235. https://doi.org/10.1016/0022-2364(86)90074-0

    Article  CAS  Google Scholar 

  41. Laule C, Leung E, Lis DKB et al (2006) Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 12(6):747–753. https://doi.org/10.1177/1352458506070928

    Article  CAS  PubMed  Google Scholar 

  42. Billiet T, Vandenbulcke M, Mädler B, Peeters R, Dhollander T, Zhang H, Deprez S, van den Bergh BRH et al (2015) Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiol Aging 36(6):2107–2121. https://doi.org/10.1016/j.neurobiolaging.2015.02.029

    Article  CAS  PubMed  Google Scholar 

  43. Gur RC, Packer IK, Hungerbuhler JP, Reivich M, Obrist W, Amarnek W, Sackeim H (1980) Differences in the distribution of gray and white matter in human cerebral hemispheres. Science 207(4436):1226–1228

    Article  CAS  Google Scholar 

  44. Thiebaut de Schotten M, Dell'Acqua F, Forkel SJ et al (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246. https://doi.org/10.1038/nn.2905

    Article  CAS  PubMed  Google Scholar 

  45. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  Google Scholar 

  46. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571

    Article  CAS  Google Scholar 

  47. Fairbrother WG, Yeh R-F, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297(5583):1007–1013. https://doi.org/10.1126/science.1073774

    Article  CAS  PubMed  Google Scholar 

  48. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  49. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207. https://doi.org/10.1006/nimg.1998.0396

    Article  CAS  PubMed  Google Scholar 

  50. Salat DH, Greve DN, Pacheco JL et al (2009) Regional white matter volume differences in nondemented aging and Alzheimer’s disease. Neuroimage 44(4):1247–1258. https://doi.org/10.1016/j.neuroimage.2008.10.030

    Article  PubMed  Google Scholar 

  51. Klein D, Rotarska-Jagiela A, Genc E, Sritharan S, Mohr H, Roux F, Han CE, Kaiser M et al (2014) Adolescent brain maturation and cortical folding: evidence for reductions in gyrification. PLoS One 9(1):e84914. https://doi.org/10.1371/journal.pone.0084914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  53. Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535. https://doi.org/10.1002/mrm.10391

    Article  PubMed  Google Scholar 

  54. Chiarello C, Welcome SE, Halderman LK, Towler S, Julagay J, Otto R, Leonard CM (2009) A large-scale investigation of lateralization in cortical anatomy and word reading: are there sex differences? Neuropsychology 23(2):210–222. https://doi.org/10.1037/a0014265

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ocklenburg S, Schlaffke L, Hugdahl K, Westerhausen R (2014) From structure to function in the lateralized brain: how structural properties of the arcuate and uncinate fasciculus are associated with dichotic listening performance. Neurosci Lett 580:32–36. https://doi.org/10.1016/j.neulet.2014.07.044

    Article  CAS  PubMed  Google Scholar 

  56. Thomas C, Avram A, Pierpaoli C, Baker C (2015) Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations. Cortex 72:65–78. https://doi.org/10.1016/j.cortex.2015.01.023

    Article  PubMed  Google Scholar 

  57. Takao H, Hayashi N, Ohtomo K (2013) White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry. Neuroscience 231:1–12. https://doi.org/10.1016/j.neuroscience.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  58. Thiebaut de Schotten M, Ffytche DH, Bizzi A et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1):49–59. https://doi.org/10.1016/j.neuroimage.2010.07.055

    Article  PubMed  Google Scholar 

  59. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64

    Article  CAS  Google Scholar 

  60. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072

    Article  PubMed  Google Scholar 

  61. Genç E, Fraenz C, Schlüter C, Friedrich P, Hossiep R, Voelkle MC, Ling JM, Güntürkün O et al (2018) Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence. Nat Commun 9(1):1905. https://doi.org/10.1038/s41467-018-04268-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fjær S, Bø L, Myhr K-M, Torkildsen Ø, Wergeland S (2015) Magnetization transfer ratio does not correlate to myelin content in the brain in the MOG-EAE mouse model. Neurochem Int 83-84:28–40. https://doi.org/10.1016/j.neuint.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  63. Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianuş A, Yiannakas MC, Newcombe J et al (2017) Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol 4(9):663–679. https://doi.org/10.1002/acn3.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O'Muircheartaigh J, Dean DC, Dirks H, Waskiewicz N, Lehman K, Jerskey BA, Deoni SCL (2013) Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 33(41):16170–16177. https://doi.org/10.1523/JNEUROSCI.1463-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58(5):461–465

    Article  CAS  Google Scholar 

  66. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315. https://doi.org/10.1038/nn1008

    Article  CAS  PubMed  Google Scholar 

  67. Chow JC, Yen Z, Ziesche SM, Brown CJ (2005) Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet 6:69–92. https://doi.org/10.1146/annurev.genom.6.080604.162350

    Article  CAS  PubMed  Google Scholar 

  68. Ocklenburg S, Ströckens F, Bless JJ, Hugdahl K, Westerhausen R, Manns M (2016) Investigating heritability of laterality and cognitive control in speech perception. Brain Cogn 109:34–39. https://doi.org/10.1016/j.bandc.2016.09.003

    Article  PubMed  Google Scholar 

  69. Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S (2018) KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions. Behav Brain Res 337:1–7. https://doi.org/10.1016/j.bbr.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  70. Ocklenburg S, Westerhausen R, Hirnstein M, Hugdahl K (2013) Auditory hallucinations and reduced language lateralization in schizophrenia: a meta-analysis of dichotic listening studies. J Int Neuropsychol Soc 19(4):410–418. https://doi.org/10.1017/S1355617712001476

    Article  PubMed  Google Scholar 

  71. Ocklenburg S, Arning L, Hahn C, Gerding WM, Epplen JT, Güntürkün O, Beste C (2011) Variation in the NMDA receptor 2B subunit gene GRIN2B is associated with differential language lateralization. Behav Brain Res 225(1):284–289. https://doi.org/10.1016/j.bbr.2011.07.042

    Article  CAS  PubMed  Google Scholar 

  72. Gould RM, Oakley T, Goldstone JV, Dugas JC, Brady ST, Gow A (2008) Myelin sheaths are formed with proteins that originated in vertebrate lineages. Neuron Glia Biol 4(2):137–152. https://doi.org/10.1017/S1740925X09990238

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298. https://doi.org/10.1038/nrg775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Martijn Froeling and PHILIPS Germany for their scientific support with the MRI measurements as well as Tobias Otto for his technical support.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant numbers Gu227/16-1 and GE2777/2-1 and the MERCUR foundation grant number An-2015-0044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ocklenburg.

Ethics declarations

The study was approved by the local ethics committee of the Faculty of Psychology at Ruhr University Bochum. All participants gave their written informed consent and were treated in accordance with the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocklenburg, S., Anderson, C., Gerding, W.M. et al. Myelin Water Fraction Imaging Reveals Hemispheric Asymmetries in Human White Matter That Are Associated with Genetic Variation in PLP1. Mol Neurobiol 56, 3999–4012 (2019). https://doi.org/10.1007/s12035-018-1351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1351-y

Keywords

Navigation