Skip to main content

Advertisement

Log in

Altered Expression of Umbilical Cord Blood Levels of miR-181b and Its Downstream Target mUCH-L1 in Infants with Moderate and Severe Neonatal Hypoxic-Ischaemic Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxic-ischaemic encephalopathy (HIE) remains one of the leading causes of neurological disability worldwide. No blood biomarker capable of early detection and classification of injury severity in HIE has been identified. This study aimed to investigate the potential of miRNA-181b (miR-181b) and its downstream target, ubiquitin C-terminal hydrolase-L1 (UCH-L1), to predict the severity of HIE. Full-term infants with perinatal asphyxia were recruited at birth and observed for the development of HIE, along with healthy controls. Levels of miR-181b and messenger UCH-L1 (mUCH-L1) in umbilical cord blood were determined using qRT-PCR. In total, 131 infants; 40 control, 50 perinatal asphyxia without HIE (PA) and 41 HIE, recruited across two separate cohorts (discovery and validation) were included in this study. Significant and consistent downregulation of miR-181b was observed in infants with moderate/severe HIE compared to all other groups in both cohorts: discovery 0.25 (0.16–0.32) vs 0.61 (0.26–1.39), p = 0.027 and validation 0.33 (0.15–1.78) vs 1.2 (0.071–2.09), p = 0.035. mUCH-L1 showed increased expression in infants with HIE in both cohorts. The expression ratio of miR-181b to mUCH-L1 was reduced in those infants with moderate/severe HIE in both cohorts: discovery cohort 0.23 (0.06–0.44) vs 1.59 (0.46–2.54), p = 0.01 and validation cohort 0.41 (0.10–0.81) vs 1.38 (0.59–2.56) in all other infants, p = 0.009. We have validated consistent patterns of altered expression in miR-181b/mUCH-L1 in moderate/severe neonatal HIE which may have the potential to guide therapeutic intervention in HIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. Volpe JJ, Volpe J, Inder T, Darras B, de Vries L, du Plessis A, Neil J, Perlman J (2008) Neurology of the newborn. Elsevier Health Sciences, New York.

  2. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

    Article  PubMed  Google Scholar 

  3. Douglas-Escobar M, Weiss MD (2012) Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front Neurol 2(3):144. https://doi.org/10.3389/fneur.2012.00144

  4. Ferriero DM, Bonifacio SL (2014) The search continues for the elusive biomarkers of neonatal brain injury. J Pediatr 164(3):438–440

    Article  Google Scholar 

  5. Looney AM, Walsh BH, Moloney G, Grenham S, Fagan A, O'Keeffe GW, Clarke G, Cryan JF et al (2015) Downregulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. J Pediatr 167(2):269–273.e262. https://doi.org/10.1016/j.jpeds.2015.04.060

    Article  CAS  PubMed  Google Scholar 

  6. Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215. https://doi.org/10.1016/j.molcel.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garberg HT, Huun MU, Baumbusch LO, Asegg-Atneosen M, Solberg R, Saugstad OD (2017) Temporal profile of circulating microRNAs after global hypoxia-ischemia in newborn piglets. Neonatology 111(2):133–139. https://doi.org/10.1159/000449032

    Article  CAS  PubMed  Google Scholar 

  8. Day INM, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90(3):327–362. https://doi.org/10.1016/j.pneurobio.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  9. Mondello S, Palmio J, Streeter J, Hayes RL, Peltola J, Jeromin A (2012) Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol 12(1):85

    Article  Google Scholar 

  10. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ III, Oli MW, Zheng W, Robinson G et al (2010) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38(1):138–144

    Article  CAS  Google Scholar 

  11. Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas J III, Buki A, Robertson C et al (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 28(6):861–870

    Article  Google Scholar 

  12. Chalak LF, Sánchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR (2014) Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 164(3):468–474. e461

    Article  CAS  Google Scholar 

  13. Douglas-Escobar M, Yang C, Bennett J, Shuster J, Theriaque D, Leibovici A, Kays D, Zheng T et al (2010) A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr Res 68(6):531–536. https://doi.org/10.1203/PDR.0b013e3181f85a03

    Article  CAS  PubMed  Google Scholar 

  14. Douglas-Escobar MV, Heaton SC, Bennett J, Young LJ, Glushakova O, Xu X, Barbeau DY, Rossignol C et al (2014) UCH-L1 and GFAP serum levels in neonates with hypoxic–ischemic encephalopathy: a single center pilot study. Front Neurol 5(273). https://doi.org/10.3389/fneur.2014.00273

  15. Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J (2013) Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res 91(10):1349–1362. https://doi.org/10.1002/jnr.23255

    Article  CAS  PubMed  Google Scholar 

  16. Walsh BH, Boylan GB, Livingstone V, Kenny LC, Dempsey EM, Murray DM (2013) Cord blood proteins and multichannel-electroencephalography in hypoxic-ischemic encephalopathy. Pediatr Crit Care Med 14(6):621–630. https://doi.org/10.1097/PCC.0b013e318291793f

    Article  PubMed  Google Scholar 

  17. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  Google Scholar 

  18. Wilson PO, Barber PC, Hamid QA, Power BF, Dhillon AP, Rode J, Day IN, Thompson RJ et al (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br J Exp Pathol 69(1):91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Genç B, Jara JH, Schultz MC, Manuel M, Stanford MJ, Gautam M, Klessner JL, Sekerkova G et al (2016) Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol 3(5):331–345

    Article  Google Scholar 

  20. Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA (2016) It is all about (U) biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxidative Med Cell Longev 2016:1–12

    Article  Google Scholar 

  21. McNaught KSP, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297(3):191–194

    Article  CAS  Google Scholar 

  22. Jackson P, Thompson R (1981) The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci 49(3):429–438

    Article  CAS  Google Scholar 

  23. Zhang D, Han S, Wang S, Luo Y, Zhao L, Li J (2017) cPKCγ-mediated down-regulation of UCHL1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK-mTOR pathway. J Cell Mol Med 21(12):3641–3657

    Article  CAS  Google Scholar 

  24. Graham SH (2016) Modification of ubiquitin C-terminal hydrolase L1 by reactive lipid species: role in neural regeneration and diseases of aging. Neural Regen Res 11(6):908–909. https://doi.org/10.4103/1673-5374.184482

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu X, Ge S, Jia R, Zhou Y, Song X, Zhang H, Fan X (2015) Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6. Oncol Rep 33(6):2789–2796

    Article  CAS  Google Scholar 

  26. Gong J, Ma J, Liu Z (2016) Overexpressed miR-181b promotes nerve cell damage via inhibiting cell proliferation but inducing cell apoptosis during ischemic cerebral stroke. Int J Clin Exp Pathol 9(2):1392–1399

    CAS  Google Scholar 

  27. Shen H, Sikorska M, LeBlanc J, Walker PR, Liu QY (2006) Oxidative stress regulated expression of ubiquitin carboxyl-terminal hydrolase-L1: role in cell survival. Apoptosis 11(6):1049–1059. https://doi.org/10.1007/s10495-006-6303-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Children’s Research Centre, Crumlin (NCRC; B/14/1), the Health Research Board (HRB; CSA/2012/40), and a Science Foundation Research Centre Award (INFANT; 12/RC/2272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre M. Murray.

Electronic Supplementary Material

Supplementary figure 1

miR-181b expression in healthy controls (n = 18), infants with perinatal asphyxia (n = 23), mild HIE (n = 10), moderate HIE (n = 3) and severe HIE (n = 3). No significant changes in expression were observed between the controls, PA and HIE groups. (JPG 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Looney, A.M., O’Sullivan, M.P., Ahearne, C.E. et al. Altered Expression of Umbilical Cord Blood Levels of miR-181b and Its Downstream Target mUCH-L1 in Infants with Moderate and Severe Neonatal Hypoxic-Ischaemic Encephalopathy. Mol Neurobiol 56, 3657–3663 (2019). https://doi.org/10.1007/s12035-018-1321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1321-4

Keywords

Navigation