Skip to main content

Advertisement

Log in

The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4+ Lymphocytes and Met-Enkephalin

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the present study, we characterize the antinociceptive effects produced by the chemokine CCL4 in mice. The intraplantar administration of very low doses of CCL4 (0.1–3 pg) produced bilateral antinociception assessed by the unilateral hot-plate test (UHP) without evoking chemotactic responses at the injection site. Moreover, the subcutaneous administration of CCL4 (3–100 pg/kg) also yielded bilateral antinociception in the UHP and the paw pressure test and reduced the number of spinal neurons that express Fos protein in response to noxious stimulation. The implication of peripheral CCR5 but not CCR1 in CCL4-evoked antinociception was deduced from the inhibition produced by systemic but not intrathecal, administration of the CCR5 antagonist DAPTA, and the inefficacy of the CCR1 antagonist J113863. Besides, the inhibition observed after subcutaneous but not intrathecal administration of naloxone demonstrated the involvement of peripheral opioids and the efficacy of naltrindole but not cyprodime or nor-binaltorphimine supported the participation of δ-opioid receptors. In accordance, plasma levels of met-enkephalin, but not β-endorphin, were augmented in response to CCL4. Likewise, CCL4-evoked antinociception was blocked by the administration of an anti-met-enk antibody. Leukocyte depletion experiments performed with cyclophosphamide, anti-Ly6G, or anti-CD3 antibodies indicated that the antinociceptive effect evoked by CCL4 depends on circulating T lymphocytes. Double immunofluorescence experiments showed a four times more frequent expression of met-enk in CD4+ than in CD8+ T lymphocytes. CCL4-induced antinociception almost disappeared upon CD4+, but not CD8+, lymphocyte depletion with selective antibodies, thus supporting that the release of met-enk from CD4+ lymphocytes underlies the opioid antinociceptive response evoked by CCL4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582

    Article  CAS  Google Scholar 

  2. Abbadie C (2005) Chemokines, chemokine receptors and pain. Trends Immunol 26:529–534

    Article  CAS  Google Scholar 

  3. White FA, Bhangoo SK, Miller RJ (2005) Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 4:834–844

    Article  CAS  Google Scholar 

  4. Dawes JM, McMahon SB (2013) Chemokines as peripheral pain mediators. Neurosci Lett 557(Pt A):1–8

    Article  CAS  Google Scholar 

  5. Baamonde A, Hidalgo A, Menéndez L (2011) Involvement of glutamate NMDA and AMPA receptors, glial cells and IL-1β in the spinal hyperalgesia evoked by the chemokine CCL2 in mice. Neurosci Lett 502:178–181

    Article  CAS  Google Scholar 

  6. Akimoto N, Honda K, Uta D, Beppu K, Ushijima Y, Matsuzaki Y, Nakashima S, Kido MA et al (2013) CCL-1 in the spinal cord contributes to neuropathic pain induced by nerve injury. Cell Death Dis 20(4):e679

    Article  Google Scholar 

  7. Yin Q, Fan Q, Zhao Y, Cheng MY, Liu H, Li J, Lu FF, Jia JT et al (2015) Spinal NF-κB and chemokine ligand 5 expression during spinal glial cell activation in a neuropathic pain model. PLoS One 10:e0115120

    Article  Google Scholar 

  8. Llorián-Salvador M, González-Rodríguez S, Lastra A, Fernández-García MT, Hidalgo A, Menéndez L, Baamonde A (2016) Involvement of CC chemokine receptor 1 and CCL3 in acute and chronic inflammatory pain in mice. Basic Clin Pharmacol Toxicol 119:32–40

    Article  Google Scholar 

  9. Llorián-Salvador M, Pevida M, González-Rodríguez S, Lastra A, Fernández-García MT, Hidalgo A, Baamonde A, Menéndez L (2016) Analgesic effects evoked by a CCR2 antagonist or an anti-CCL2 antibody in inflamed mice. Fundam Clin Pharmacol 30:235–238

    Article  Google Scholar 

  10. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74:3275–3291

    Article  CAS  Google Scholar 

  11. Zhou YQ, Gao HY, Guan XH, Yuan X, Fang GG, Chen Y, Ye DW (2015) Chemokines and their receptors: Potential therapeutic targets for bone Cancer pain. Curr Pharm Des 21:5029–5033

    Article  CAS  Google Scholar 

  12. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21:5027–5035

    Article  CAS  Google Scholar 

  13. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE et al (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 100:7947–7952

    Article  CAS  Google Scholar 

  14. Silva RL, Lopes AH, Guimarães RM, Cunha TM (2017) CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol Dis 105:109–116

    Article  CAS  Google Scholar 

  15. Xu W, Zhu M, Yuan S, Yu W (2016) Spinal CXCL5 contributes to nerve injury-induced neuropathic pain via modulating GSK-3β phosphorylation and activity in rats. Neurosci Lett 634:52–59

    Article  CAS  Google Scholar 

  16. Yu Y, Huang X, Di Y, Qu L, Fan N (2017) Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep 7:5707

    Article  Google Scholar 

  17. Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O'Connor KA, Verge GM, Chapman G et al (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302

    Article  CAS  Google Scholar 

  18. Rittner HL, Brack A, Stein C (2008) The other side of the medal: how chemokines promote analgesia. Neurosci Lett 437:203–208

    Article  CAS  Google Scholar 

  19. Rittner HL, Labuz D, Schaefer M, Mousa SA, Schulz S, Schäfer M, Stein C, Brack A (2006) Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells. FASEB J 20:2627–2629

    Article  CAS  Google Scholar 

  20. Wang Y, Gehringer R, Mousa SA, Hackel D, Brack A, Rittner HL (2014) CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture. PLoS One 9:e94696

    Article  Google Scholar 

  21. Kiguchi N, Kobayashi Y, Maeda T, Fukazawa Y, Tohya K, Kimura M, Kishioka S (2012) Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther 340:577–587

    Article  CAS  Google Scholar 

  22. Bu H, Shu B, Gao F, Liu C, Guan X, Ke C, Cao F, Hinton AO Jr et al (2014) Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models. Breast Cancer Res Treat 143:255–263

    Article  CAS  Google Scholar 

  23. González-Rodríguez S, Álvarez MG, García-Domínguez M, Lastra A, Cernuda-Cernuda R, Folgueras AR, Fernández-García MT, Hidalgo A et al (2017) Hyperalgesic and hypoalgesic mechanisms evoked by the acute administration of CCL5 in mice. Brain Behav Immun 62:151–161

    Article  Google Scholar 

  24. Oliveira SH, Lira S, Martinez AC, Wiekowski M, Sullivan L, Lukacs NW (2002) Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL1) is mediated by their specific receptors, CCR5 and CCR8. J Leukoc Biol 71:1019–1025

    CAS  PubMed  Google Scholar 

  25. Appelberg R (1992) Macrophage inflammatory proteins MIP-1 and MIP-2 are involved in T cell-mediated neutrophil recruitment. J Leukoc Biol 52:303–306

    Article  CAS  Google Scholar 

  26. Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV (1993) Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821–1826

    Article  CAS  Google Scholar 

  27. Uguccioni M, D'Apuzzo M, Loetscher M, Dewald B, Baggiolini M (1995) Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 25:64–68

    Article  CAS  Google Scholar 

  28. Saika F, Kiguchi N, Kobayashi Y, Fukazawa Y, Kishioka S (2012) CC-chemokine ligand 4/macrophage inflammatory protein-1β participates in the induction of neuropathic pain after peripheral nerve injury. Eur J Pain 16:1271–1280

    Article  CAS  Google Scholar 

  29. Guo W, Imai S, Yang JL, Zou S, Watanabe M, Chu YX, Mohammad Z, Xu H et al (2017) In vivo immune interactions of multipotent stromal cells underlie their long-lasting pain-relieving effect. Sci Rep 7:10107

    Article  Google Scholar 

  30. Dejima T, Shibata K, Yamada H, Hara H, Iwakura Y, Naito S, Yoshikai Y (2011) Protective role of naturally occurring interleukin-17A-producing γ δ T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 79:4503–4510

    Article  CAS  Google Scholar 

  31. Loubaki L, Tremblay T, Bazin R (2013) In vivo depletion of leukocytes and platelets following injection of T cell-specific antibodies into mice. J Immunol Methods 393:38–44

    Article  CAS  Google Scholar 

  32. González-Rodríguez S, Llames S, Hidalgo A, Baamonde A, Menéndez L (2012) Potentiation of acute morphine-induced analgesia measured by a thermal test in bone cancer-bearing mice. Fundam Clin Pharmacol 26:363–372

    Article  Google Scholar 

  33. Baamonde A, Curto-Reyes V, Juárez L, Meana A, Hidalgo A, Menéndez L (2007) Antihyperalgesic effects induced by the IL-1 receptor antagonist anakinra and increased IL-1beta levels in inflamed and osteosarcoma-bearing mice. Life Sci 81:673–682

    Article  CAS  Google Scholar 

  34. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  Google Scholar 

  35. Baamonde A, Lastra A, Fresno MF, Llames S, Meana A, Hidalgo A, Menéndez L (2004) Implantation of tumoral XC cells induces chronic, endothelin-dependent, thermal hyperalgesia in mice. Cell Mol Neurobiol 24:269–281

    Article  Google Scholar 

  36. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111:409–419

    CAS  PubMed  Google Scholar 

  37. Biddolph SC, Gatter KC (1999) Immunohistochemistry of lymphoid organs. In: Rowland-Jones SL, McMichael AJ (eds) Lymphocytes. A practical approach, 2nd edn. Oxford University Press, Oxford, p. 30

    Google Scholar 

  38. Cabot PJ, Carter L, Schäfer M, Stein C (2001) Methionine enkephalin and dynorphin A release from immune cells and control of inflammatory pain. Pain 93:207–212

    Article  CAS  Google Scholar 

  39. Lu P, Nakamoto Y, Nemoto-Sasaki Y, Fujii C, Wang H, Hashii M, Ohmoto Y, Kaneko S et al (2003) Potential interaction between CCR1 and its ligand, CCL3, induced by endogenously produced interleukin-1 in human hepatomas. Am J Pathol 162:1249–1258

    Article  CAS  Google Scholar 

  40. Repeke CE, Ferreira SB Jr, Claudino M, Silveira EM, de Assis GF, Avila-Campos MJ, Silva JS, Garlet GP (2010) Evidences of the cooperative role of the chemokines CCL3, CCL4 and CCL5 and its receptors CCR1+ and CCR5+ in RANKL+ cell migration throughout experimental periodontitis in mice. Bone 46:1122–1130

    Article  CAS  Google Scholar 

  41. Chou CC, Fine JS, Pugliese-Sivo C, Gonsiorek W, Davies L, Deno G, Petro M, Schwarz M et al (2002) Pharmacological characterization of the chemokine receptor, hCCR1 in a stable transfectant and differentiated HL-60 cells: antagonism of hCCR1 activation by MIP-1beta. Br J Pharmacol 137:663–675

    Article  CAS  Google Scholar 

  42. Alkhatib G (2009) The biology of CCR5 and CXCR4. Curr Opin HIV AIDS 4:96–103

    Article  Google Scholar 

  43. Chang TT, Chen JW (2016) Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes? Cardiovasc Diabetol 15:117

    Article  Google Scholar 

  44. Pevida M, Lastra A, Meana Á, Hidalgo A, Baamonde A, Menéndez L (2014) The chemokine CCL5 induces CCR1-mediated hyperalgesia in mice inoculated with NCTC 2472 tumoral cells. Neuroscience 259:113–125

    Article  CAS  Google Scholar 

  45. Hang LH, Li SN, Dan X, Shu WW, Luo H, Shao DH (2017) Involvement of spinal CCR5/PKCγ signaling pathway in the maintenance of cancer-induced bone pain. Neurochem Res 42:563–571

    Article  CAS  Google Scholar 

  46. Heyman JS, Koslo RJ, Mosberg HI, Tallarida RJ, Porreca F (1986) Estimation of the affinity of naloxone at supraspinal and spinal opioid receptors in vivo: studies with receptor selective agonists. Life Sci 39:1795–1803

    Article  CAS  Google Scholar 

  47. Mansour A, Hoversten MT, Taylor LP, Watson SJ, Akil H (1995) The cloned mu, delta and kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res 700:89–98

    Article  CAS  Google Scholar 

  48. Padrós MR, Vindrola O, Zunszain P, Fainboin L, Finkielman S, Nahmod VE (1989) Mitogenic activation of the human lymphocytes induce the release of proenkephalin derived peptides. Life Sci 45:1805–1811

    Article  Google Scholar 

  49. Figuerola ML, Vindrola O, Barontini MB, Leston JA (1991) Changes in neutrophil Met-Enk containing peptides in episodic cluster headache. Headache 31:406–408

    Article  CAS  Google Scholar 

  50. Hook S, Camberis M, Prout M, Konig M, Zimmer A, Van Heeke G, Le Gros G (1999) Preproenkephalin is a Th2 cytokine but is not required for Th2 differentiation in vitro. Immunol Cell Biol 77:385–390

    Article  CAS  Google Scholar 

  51. Shan F, Xia Y, Wang N, Meng J, Lu C, Meng Y, Plotnikoff NP (2011) Functional modulation of the pathway between dendritic cells (DCs) and CD4+T cells by the neuropeptide: methionine enkephalin (MENK). Peptides 32:929–937

    Article  CAS  Google Scholar 

  52. Hua H, Lu C, Li W, Meng J, Wang D, Plotnikoff NP, Wang E, Shan F (2012) Comparison of stimulating effect on subpopulations of lymphocytes in human peripheral blood by methionine enkephalin with IL-2 and IFN-γ. Hum Vaccin Immunother 8:1082–1089

    Article  CAS  Google Scholar 

  53. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132

    Article  CAS  Google Scholar 

  54. Boué J, Blanpied C, Brousset P, Vergnolle N, Dietrich G (2011) Endogenous opioid-mediated analgesia is dependent on adaptive T cell response in mice. J Immunol 186:5078–5084

    Article  Google Scholar 

  55. Boué J, Blanpied C, Djata-Cabral M, Pelletier L, Vergnolle N, Dietrich G (2012) Immune conditions associated with CD4+ T effector-induced opioid release and analgesia. Pain 153:485–493

    Article  Google Scholar 

  56. Krzysiek R, Lefèvre EA, Zou W, Foussat A, Bernard J, Portier A, Galanaud P, Richard Y (1999) Antigen receptor engagement selectively induces macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta chemokine production in human B cell. J Immunol 162:4455–4463

    CAS  PubMed  Google Scholar 

  57. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391:344–345

    Article  CAS  Google Scholar 

  58. Askew D, Su CA, Barkauskas DS, Dorand RD, Myers J, Liou R, Nthale J, Huang AY (2016) Transient surface CCR5 expression by naive CD8+ T cells within inflamed lymph nodes is dependent on high endothelial venule interaction and augments Th cell-dependent memory response. J Immunol 196:3653–3664

    Article  CAS  Google Scholar 

  59. Basso L, Boué J, Mahiddine K, Blanpied C, Robiou-du-Pont S, Vergnolle N, Deraison C, Dietrich G (2016) Endogenous analgesia mediated by CD4+ T lymphocytes is dependent on Enks in mice. J Neuroinflammation 13:132

    Article  Google Scholar 

  60. Noble F, Turcaud S, Fournié-Zaluski MC, Roques BP (1992) Repeated systemic administration of the mixed inhibitor of enkephalin-degrading enzymes, RB101, does not induce either antinociceptive tolerance or cross-tolerance with morphine. Eur J Pharmacol 223:83–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grants were provided by the Ministerio de Economía, Industria y Competitividad, and FEDER (European Union) (SAF2017-86799-R). IUOPA is supported by Obra Social Fundación Cajastur-Liberbank (Asturias, Spain). M.G.D. is granted by a FPU predoctoral fellowship (FPU13-04585, MECD, Spain). A.R.F. is recipient of a Ramón y Cajal Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Baamonde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Domínguez, M., Lastra, A., Folgueras, A.R. et al. The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4+ Lymphocytes and Met-Enkephalin. Mol Neurobiol 56, 1578–1595 (2019). https://doi.org/10.1007/s12035-018-1176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1176-8

Keywords

Navigation