Skip to main content
Log in

Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP61 levels were significantly reduced, with a concomitant increase of STEP33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP61 levels were significantly reduced, but STEP33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkBTyr816, pPLCγTyr783, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 64:65–87. https://doi.org/10.1124/pr.110.003053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pelkey KA, Askalan R, Paul S, Kalia LV, Nguyen TH, Pitcher GM, Salter MW, Lombroso PJ (2002) Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34:127–138

    Article  CAS  Google Scholar 

  3. Paul S, Olausson P, Venkitaramani DV, Ruchkina I, Moran TD, Tronson N, Mills E, Hakim S et al (2007) The striatal-enriched protein tyrosine phosphatase gates long-term potentiation and fear memory in the lateral amygdala. Biol Psychiatry 61:1049–1061. https://doi.org/10.1016/j.biopsych.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  4. Olausson P, Venkitaramani DV, Moran TD, Salter MW, Taylor JR, Lombroso PJ (2012) The tyrosine phosphatase STEP constrains amygdala-dependent memory formation and neuroplasticity. Neuroscience 225:1–8. https://doi.org/10.1016/j.neuroscience.2012.07.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Kurup P, Xu J, Carty N, Fernandez SM, Nygaard HB, Pittenger C, Greengard P et al (2010) Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer’s disease mouse model. Proc Natl Acad Sci 107:19014–19019. https://doi.org/10.1073/pnas.1013543107

    Article  PubMed  Google Scholar 

  6. Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, Proctor WR, Lombroso PJ et al (2011) Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci U S A 108:6650–6655. https://doi.org/10.1073/pnas.1017856108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jang S-S, Royston SE, Xu J, Cavaretta JP, Vest MO, Lee KY, Lee S, Jeong HG et al (2015) Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity. Mol Brain 8:55. https://doi.org/10.1186/s13041-015-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venkitaramani DV, Moura PJ, Picciotto MR, Lombroso PJ (2011) Striatal-enriched protein tyrosine phosphatase (STEP) knockout mice have enhanced hippocampal memory. EurJNeurosci 33:2288–2298

    Google Scholar 

  9. Venkitaramani DV, Paul S, Zhang Y, Kurup P, Ding L, Tressler L, Allen M, Sacca R et al (2009) Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse 63:69–81

    Article  CAS  Google Scholar 

  10. Baudry M, Bi X, Gall C, Lynch G (2011) The biochemistry of memory: the 26 year journey of a “new and specific hypothesis”. Neurobiol Learn Mem 95:125–133. https://doi.org/10.1016/j.nlm.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  11. Baudry M, Bi X (2016) Calpain-1 and Calpain-2: the Yin and Yang of synaptic plasticity and neurodegeneration. Trends Neurosci 39:235–245. https://doi.org/10.1016/j.tins.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salazar IL, Caldeira MV, Curcio M, Duarte CB (2016) The role of proteases in hippocampal synaptic plasticity: putting together small pieces of a complex puzzle. Neurochem Res 41:156–182. https://doi.org/10.1007/s11064-015-1752-5

    Article  CAS  PubMed  Google Scholar 

  13. Jarome TJ, Helmstetter FJ (2013) The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 105:107–116. https://doi.org/10.1016/j.nlm.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59:14–39. https://doi.org/10.1124/pr.59.1.4

    Article  CAS  PubMed  Google Scholar 

  15. Mabb AM, Ehlers MD (2010) Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 26:179–210. https://doi.org/10.1146/annurev-cellbio-100109-104129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsai NP (2014) Ubiquitin proteasome system-mediated degradation of synaptic proteins: an update from the postsynaptic side. Biochim Biophys Acta-Mol Cell Res 1843:2838–2842. https://doi.org/10.1016/j.bbamcr.2014.08.006

    Article  CAS  Google Scholar 

  17. Hegde AN (2010) The ubiquitin-proteasome pathway and synaptic plasticity. Learn Mem 17:314–327. https://doi.org/10.1101/lm.1504010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA et al (2009) Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 29:9330–9343

    Article  CAS  Google Scholar 

  19. Saavedra A, Puigdellívol M, Tyebji S, Kurup P, Xu J, Ginés S, Alberch J, Lombroso PJ et al (2016) BDNF induces striatal-enriched protein tyrosine phosphatase 61 degradation through the proteasome. Mol Neurobiol 53:4261–4273. https://doi.org/10.1007/s12035-015-9335-7

    Article  CAS  PubMed  Google Scholar 

  20. Mukherjee S, Poddar R, Deb I, Paul S (2011) Dephosphorylation of specific sites in the KIS domain leads to ubiquitin-mediated degradation of the tyrosine phosphatase STEP. Biochem J 440:115–125

    Article  CAS  Google Scholar 

  21. Xu J, Kurup P, Azkona G, Baguley TD, Saavedra A, Nairn AC, Ellman JA, Pérez-Navarro E et al (2015) Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61) levels. J Neurochem 136:285–294. https://doi.org/10.1111/jnc.13295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu J, Chatterjee M, Baguley TD, Brouillette J, Kurup P, Ghosh D, Kanyo J, Zhang Y et al (2014) Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s disease. PLoS Biol 12:1–17. https://doi.org/10.1371/journal.pbio.1001923

    Article  CAS  Google Scholar 

  23. Saavedra A, Giralt A, Arumí H, Alberch J, Pérez-Navarro E (2013) Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntington’s disease. PLoS One 8:e73664. https://doi.org/10.1371/journal.pone.0073664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857. https://doi.org/10.1172/JCI43992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giralt A, Saavedra A, Carretón O, Xifró X, Alberch J, Pérez-Navarro E (2011) Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum Mol Genet 20:4232–4247

    Article  CAS  Google Scholar 

  26. Lee YA, Goto Y (2011) Neurodevelopmental disruption of cortico-striatal function caused by degeneration of habenula neurons. PLoS One 6:e19450. https://doi.org/10.1371/journal.pone.0019450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saavedra A, Giralt A, Rué L et al (2011) Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci 31:8150–8162

    Article  CAS  Google Scholar 

  28. Saavedra A, Fernández-García S, Cases S, Puigdellívol M, Alcalá-Vida R, Martín-Flores N, Alberch J, Ginés S et al (2017) Chelerythrine promotes Ca2+-dependent calpain activation in neuronal cells in a PKC-independent manner. Biochim Biophys Acta - Gen Subj 1861:922–935. https://doi.org/10.1016/j.bbagen.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  29. Zhu G, Liu Y, Wang Y, Bi X, Baudry M (2015) Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 35:621–633. https://doi.org/10.1523/JNEUROSCI.2193-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azkona G, Saavedra A, Aira Z, Aluja D, Xifró X, Baguley T, Alberch J, Ellman JA et al (2016) Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition. Pain 157:377–386. https://doi.org/10.1097/j.pain.0000000000000329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suo Z, Liu J, Xue M et al (2017) Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats. Neuroscience 352:97–105. https://doi.org/10.1016/j.neuroscience.2017.03.048

    Article  CAS  PubMed  Google Scholar 

  32. Davies C, Collingridge G (1996) Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. J Physiol 496(Pt 2):451–470

    Article  CAS  Google Scholar 

  33. Matias CM, Dionísio JC, Arif M, Quinta-Ferreira ME (2003) Effect of D-2 amino-5-phosphonopentanoate and nifedipine on postsynaptic calcium changes associated with long-term potentiation in hippocampal CA1 area. Brain Res 976:90–99

    Article  CAS  Google Scholar 

  34. Raymond CR, Redman SJ (2006) Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 570:97–111. https://doi.org/10.1113/jphysiol.2005.098947

    Article  CAS  PubMed  Google Scholar 

  35. Raymond CR, Redman SJ (2002) Different calcium sources are narrowly tuned to the induction of different forms of LTP. J Neurophysiol 88:249–255

    Article  CAS  Google Scholar 

  36. Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1:74–82. https://doi.org/10.1101/lm.1.1.74

    Article  CAS  PubMed  Google Scholar 

  37. Woo NH, Duffy SN, Abel T, Nguyen PV (2003) Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic AMP-dependent protein kinase. Hippocampus 13:293–300. https://doi.org/10.1002/hipo.10086

    Article  CAS  PubMed  Google Scholar 

  38. Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal sensitivity of protein kinase A activation in late-phase long term potentiation. PLoS Comput Biol 6:e1000691. https://doi.org/10.1371/journal.pcbi.1000691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith JP, Lal V, Bowser D, Cappai R, Masters CL, Ciccotosto GD (2009) Stimulus pattern dependence of the Alzheimer’s disease amyloid-β 42 peptide's inhibition of long term potentiation in mouse hippocampal slices. Brain Res 1269:176–184. https://doi.org/10.1016/j.brainres.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Kolbeck R, Barde Y et al (1999) Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci 19:7983–7990

    Article  CAS  Google Scholar 

  41. Kang H, Welcher A a, Shelton D, Schuman EM (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664. https://doi.org/10.1016/S0896-6273(00)80378-5

    Article  CAS  PubMed  Google Scholar 

  42. Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H, Drake C, Kandel ER (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32:123–140

    Article  CAS  Google Scholar 

  43. Rex CS, Lin C, Krama EA et al (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 27:3017–3029. https://doi.org/10.1523/JNEUROSCI.4037-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baudry M, Zhu G, Liu Y, Wang Y, Briz V, Bi X (2015) Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res 1621:73–81. https://doi.org/10.1016/j.brainres.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  45. Tashev R, Moura PJ, Venkitaramani DV, Prosperetti C, Centonze D, Paul S, Lombroso PJ (2009) A substrate trapping mutant form of striatal-enriched protein tyrosine phosphatase prevents amphetamine-induced stereotypies and long-term potentiation in the striatum. Biol Psychiatry 65:637–645. https://doi.org/10.1016/j.biopsych.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Yang C-H, Huang C-C, Hsu K-S (2012) A critical role for protein tyrosine phosphatase nonreceptor type 5 in determining individual susceptibility to develop stress-related cognitive and morphological changes. J Neurosci 32:7550–7562. https://doi.org/10.1523/JNEUROSCI.5902-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Venkitaramani DV, Gladding CM, Zhang Y, Kurup P, Molnar E, Collingridge GL, Lombroso PJ (2008) The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci 28:10561–10566. https://doi.org/10.1523/JNEUROSCI.2666-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517–1532

    Article  CAS  Google Scholar 

  49. Huber KM, Roder JC, Bear MF (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol 86:321–325

    Article  CAS  Google Scholar 

  50. Shimizu K, Phan T, Mansuy IM, Storm DR (2007) Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128:1219–1229

    Article  CAS  Google Scholar 

  51. Wang Y, Zhu G, Briz V, Hsu YT, Bi X, Baudry M (2014) A molecular brake controls the magnitude of long-term potentiation. Nat Commun 5:3051. https://doi.org/10.1038/ncomms4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khoutorsky A, Yanagiya A, Gkogkas CG, Fabian MR, Prager-Khoutorsky M, Cao R, Gamache K, Bouthiette F et al (2013) Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78:298–311. https://doi.org/10.1016/j.neuron.2013.02.025

    Article  CAS  PubMed  Google Scholar 

  53. Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN (2008) Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem 15:335–347. https://doi.org/10.1101/lm.984508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64:871–884. https://doi.org/10.1016/j.neuron.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  55. Alonso M, Vianna MRM, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F et al (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12:551–560. https://doi.org/10.1002/hipo.10035

    Article  CAS  PubMed  Google Scholar 

  56. Goulart BK, de Lima MNM, de Farias CB, Reolon GK, Almeida VR, Quevedo J, Kapczinski F, Schröder N et al (2010) Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels. Neuroscience 167:969–973. https://doi.org/10.1016/j.neuroscience.2010.03.032

    Article  CAS  PubMed  Google Scholar 

  57. Kim DH, Kim JM, Park SJ, Cai M, Liu X, Lee S, Shin CY, Ryu JH (2012) GABA(A) receptor blockade enhances memory consolidation by increasing hippocampal BDNF levels. Neuropsychopharmacology 37:422–433. https://doi.org/10.1038/npp.2011.189

    Article  CAS  PubMed  Google Scholar 

  58. Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20:7116–7121

    Article  CAS  Google Scholar 

  59. Chain DG, Schwartz JH, Hegde AN (1999) Ubiquitin-mediated proteolysis in learning and memory. Mol Neurobiol 20:125–142. https://doi.org/10.1007/BF02742438

    Article  CAS  PubMed  Google Scholar 

  60. Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER et al (1997) Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89:115–126. https://doi.org/10.1016/S0092-8674(00)80188-9

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Salon M, Alonso M, Vianna MRM, Viola H, E Souza TM, Izquierdo I, Pasquini JM, Medina JH (2001) The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci 14:1820–1826. https://doi.org/10.1046/j.0953-816X.2001.01806.x

    Article  CAS  PubMed  Google Scholar 

  62. Cases S, Saavedra A, Tyebji S, Giralt A, Alberch J, Pérez-Navarro E (2018) Age-related changes in STriatal-enriched protein tyrosine phosphatase levels: regulation by BDNF. Mol Cell Neurosci 86:41–49. https://doi.org/10.1016/j.mcn.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  63. Chain DG, Casadio A, Schacher S, Hegde AN, Valbrun M, Yamamoto N, Goldberg AL, Bartsch D et al (1999) Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22:147–156. https://doi.org/10.1016/S0896-6273(00)80686-8

    Article  CAS  PubMed  Google Scholar 

  64. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799–811. https://doi.org/10.1016/S0896-6273(00)80596-6

    Article  CAS  PubMed  Google Scholar 

  65. Foley AG, Hartz BP, Gallagher HC, Rønn LCB, Berezin V, Bock E, Regan CM (2000) A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem 74:2607–2613. https://doi.org/10.1046/j.1471-4159.2000.0742607.x

    Article  CAS  PubMed  Google Scholar 

  66. Artinian J, McGauran AMT, De Jaeger X et al (2008) Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. Eur J Neurosci 27:3009–3019. https://doi.org/10.1111/j.1460-9568.2008.06262.x

    Article  PubMed  Google Scholar 

  67. Jeon SJ, Lee HJ, Lee HE, Park SJ, Gwon Y, Kim H, Zhang J, Shin CY et al (2017) Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. Neuropharmacology 113:100–109. https://doi.org/10.1016/j.neuropharm.2016.07.029

    Article  CAS  PubMed  Google Scholar 

  68. Blank M, Petry FS, Lichtenfels M, Valiati FE, Dornelles AS, Roesler R (2016) TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition. J Neural Transm 123:159–165. https://doi.org/10.1007/s00702-015-1464-7

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Wang Y, Zhu G, Sun J, Bi X, Baudry M (2016) A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology 105:471–477. https://doi.org/10.1016/j.neuropharm.2016.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Upadhya SC, Smith TK, Hegde AN (2004) Ubiquitin-proteasome-mediated CREB repressor degradation during induction of long-term facilitation. J Neurochem 91:210–219. https://doi.org/10.1111/j.1471-4159.2004.02707.x

    Article  CAS  PubMed  Google Scholar 

  71. Chagniel L, Bergeron Y, Bureau G, Massicotte G, Cyr M (2014) Regulation of tyrosine phosphatase STEP61 by protein kinase a during motor skill learning in mice. PLoS One 9:1–8. https://doi.org/10.1371/journal.pone.0086988

    Article  CAS  Google Scholar 

  72. Paul S, Nairn AC, Wang P, Lombroso PJ (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci 6:34–42

    Article  CAS  Google Scholar 

  73. Paul S, Connor JA (2010) NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem 114:1107–1118. https://doi.org/10.1111/j.1471-4159.2010.06835.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Castonguay D, Dufort-Gervais J, Ménard C, Chatterjee M, Quirion R, Bontempi B, Schneider JS, Arnsten AFT et al (2018) The tyrosine phosphatase STEP is involved in age-related memory decline. Curr Biol 28:1079–1089. https://doi.org/10.1016/j.cub.2018.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to A. López and M. T. Muñoz for their technical support, and to Dr. Paul J. Lombroso (Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA) for providing the STEP KO mice to establish our colony, and the STEP inhibitor TC-2153.

Funding

This work was supported by the Ministerio de Economia y Competitividad, Spain (SAF2016-08573-R to E. Pérez-Navarro and BFU2014-57929-P, cofinanced by FEDER, to E.D. Martín).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Pérez-Navarro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Fig. S1

Relative abundance of STEP61 and STEP33 in hippocampal extracts. Representative immunoblot for STEP61 and STEP33 from the same film exposition showing that to detect the 33 kDa band the 61 kDa isoform becomes overexposed. (PDF 39.4 kb)

Fig. S2

Similar STEP61 ubiquitination patterns after immunoprecipitation (IP) of STEP from native or denatured samples. STEP was immunoprecipitated from native (STEPn) or denatured (STEPdn) hippocampal extracts and Western blot (WB) was performed against ubiquitin and STEP. A mouse IgG was used as control. p, pellet; sp, supernatant. (PDF 47 kb)

Fig. S3

No changes in STEP61 levels in the hippocampus earlier than 1 h post-training in the T-SAT. Hippocampal STEP61 levels were analyzed by Western blot of protein extracts obtained from the hippocampus of naïve mice, and mice trained in the T-SAT and sacrificed 15 or 30 min later. Representative immunoblots are shown. Values (obtained by densitometric analysis of Western blot data) are expressed as percentage of naïve mice and shown as mean ± SEM (n = 4-7). (PDF 41.1 kb)

Fig. S4

Injection of 0.5 mg/Kg ANA-12 has no effect on LTM in the T-SAT or on hippocampal STEP61 levels. a Mice received an intraperitoneal injection of saline or 0.5 mg/Kg ANA-12 and were trained in the T-SAT immediately after. LTM was assessed 4 h later. The graph shows the percentage of arm preference (mean ± SEM; n = 13/group). Data were analyzed by Student’s t test. ***P < 0.001 as compared to old arm. b STEP61 levels were analyzed by Western blot of protein extracts obtained from the hippocampus of mice injected with saline or 0.5 mg/Kg ANA-12 before T-SAT training and subjected to LTM assessment. Representative immunoblots are shown. Values (obtained by densitometric analysis of Western blot data) are expressed as percentage of saline-treated mice and shown as mean ± SEM (n = 6/group). Data were analyzed by Student’s t test. (PDF 17.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra, A., Ballesteros, J.J., Tyebji, S. et al. Proteolytic Degradation of Hippocampal STEP61 in LTP and Learning. Mol Neurobiol 56, 1475–1487 (2019). https://doi.org/10.1007/s12035-018-1170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1170-1

Keywords

Navigation